Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractJohansen’s Cointegration Test (JCT) performs remarkably well in finding stable bivariate cointegration relationships. Nonetheless, the JCT is not necessarily designed to detect such relationships in presence of non-linear patterns such as structural breaks or cycles that fall in the low frequency portion of the spectrum. Seasonal adjustment procedures might not detect such non-linear patterns, and thus, we expose the difficulty in identifying cointegrating relations under the traditional use of JCT. Within several Monte Carlo experiments, we show that wavelets can empower more the JCT framework than the traditional seasonal adjustment methodologies, allowing for identification of hidden cointegrating relationships. Moreover, we confirm these results using seasonally adjusted time series as US consumption and income, gross national product (GNP) and money supply M1 and GNP and M2.
Studies in Nonlinear Dynamics & Econometrics – de Gruyter
Published: Dec 29, 2021
Keywords: cointegration; near cointegration; seasonal adjustment; wavelet decomposition; C01; C12; C22
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.