Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Privacy-preserving training of tree ensembles over continuous data

Privacy-preserving training of tree ensembles over continuous data AbstractMost existing Secure Multi-Party Computation (MPC) protocols for privacy-preserving training of decision trees over distributed data assume that the features are categorical. In real-life applications, features are often numerical. The standard “in the clear” algorithm to grow decision trees on data with continuous values requires sorting of training examples for each feature in the quest for an optimal cut-point in the range of feature values in each node. Sorting is an expensive operation in MPC, hence finding secure protocols that avoid such an expensive step is a relevant problem in privacy-preserving machine learning. In this paper we propose three more efficient alternatives for secure training of decision tree based models on data with continuous features, namely: (1) secure discretization of the data, followed by secure training of a decision tree over the discretized data; (2) secure discretization of the data, followed by secure training of a random forest over the discretized data; and (3) secure training of extremely randomized trees (“extra-trees”) on the original data. Approaches (2) and (3) both involve randomizing feature choices. In addition, in approach (3) cut-points are chosen randomly as well, thereby alleviating the need to sort or to discretize the data up front. We implemented all proposed solutions in the semi-honest setting with additive secret sharing based MPC. In addition to mathematically proving that all proposed approaches are correct and secure, we experimentally evaluated and compared them in terms of classification accuracy and runtime. We privately train tree ensembles over data sets with thousands of instances or features in a few minutes, with accuracies that are at par with those obtained in the clear. This makes our solution more efficient than the existing approaches, which are based on oblivious sorting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings on Privacy Enhancing Technologies de Gruyter

Loading next page...
 
/lp/de-gruyter/privacy-preserving-training-of-tree-ensembles-over-continuous-data-cpDTkIitmn

References (55)

Publisher
de Gruyter
Copyright
© 2022 Samuel Adams et al., published by Sciendo
ISSN
2299-0984
eISSN
2299-0984
DOI
10.2478/popets-2022-0042
Publisher site
See Article on Publisher Site

Abstract

AbstractMost existing Secure Multi-Party Computation (MPC) protocols for privacy-preserving training of decision trees over distributed data assume that the features are categorical. In real-life applications, features are often numerical. The standard “in the clear” algorithm to grow decision trees on data with continuous values requires sorting of training examples for each feature in the quest for an optimal cut-point in the range of feature values in each node. Sorting is an expensive operation in MPC, hence finding secure protocols that avoid such an expensive step is a relevant problem in privacy-preserving machine learning. In this paper we propose three more efficient alternatives for secure training of decision tree based models on data with continuous features, namely: (1) secure discretization of the data, followed by secure training of a decision tree over the discretized data; (2) secure discretization of the data, followed by secure training of a random forest over the discretized data; and (3) secure training of extremely randomized trees (“extra-trees”) on the original data. Approaches (2) and (3) both involve randomizing feature choices. In addition, in approach (3) cut-points are chosen randomly as well, thereby alleviating the need to sort or to discretize the data up front. We implemented all proposed solutions in the semi-honest setting with additive secret sharing based MPC. In addition to mathematically proving that all proposed approaches are correct and secure, we experimentally evaluated and compared them in terms of classification accuracy and runtime. We privately train tree ensembles over data sets with thousands of instances or features in a few minutes, with accuracies that are at par with those obtained in the clear. This makes our solution more efficient than the existing approaches, which are based on oblivious sorting.

Journal

Proceedings on Privacy Enhancing Technologiesde Gruyter

Published: Apr 1, 2022

Keywords: Machine Learning; Privacy; Secure Multi-Party Computation; Decision Tree Ensembles; Random Forest; Training

There are no references for this article.