Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractAlthough the prediction of stock prices and analyses of their returns and risks have always played integral roles in the stock market, accurate predictions are notoriously difficult to make, and mistakes may be devastatingly costly. This study attempts to resolve this difficulty by proposing and applying a two-stage long short-term memory (LSTM) model based on multi-scale nonlinear integration that considers a diverse array of factors. Initially, variational mode decomposition (VMD) is used to decompose an employed stock index to identify the different characteristics of the stock index sequence. Then, an LSTM model based on the multi-factor nonlinear integration of overnight information is established in a second stage. Finally, the joint VMD-LSTM model is used to predict the stock index. To validate the model, the Shanghai Composite, Nikkei 225, and Hong Kong Hang Seng indices were analyzed. Experiments show that, by comparison, the prediction effect of the mixed model is better than that of a single LSTM. For example, RMSE, MAE and MAPE of the mixed model of the Shanghai Composite Index are 4.22, 4.25 and 0.2 lower than the single model respectively. The RMSE, MAE and MAPE of the mixed model of the Nikkei 225 Index are 47.74, 37.21 and 0.17 lower than the single model respectively, and the RMSE, MAE and MAPE of the mixed model of the Hong Kong Hang Seng Index are 37.88, 25.06 and 0.08 lower than the single model respectively.
Studies in Nonlinear Dynamics & Econometrics – de Gruyter
Published: Dec 1, 2022
Keywords: long short-term memory neural network; multi-scale decomposition; nonlinear integration; overnight information; stock prediction
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.