Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity

Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity REFERENCESABOUKHEIR, E. – SHESHSHAYEE, M.S. – UDAYAKUMAR, M. 2008. AAB International Conference on Resource Capture by Crops: Integrated Approach, 14–16 September 2008, University of Nottingham at Sutton Bonington.ABUL-NAAS, A.A. – OMRAN, M.S. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. In Zeitschrift für Acker-und Pflanzenbau, vol. 140, pp. 229–236.AHMED, F.M. 1994. Effect of saline water irrigation at different stages of growth on cotton plant. In Assiut Journal of Agricultural Sciences, vol. 25, pp. 63–74.ARMENGAUD, P. – ZAMBAUX, K. – HILLS, A. – SULPICE, R. – PATTISON, R.J. – BLATT, M.R. – AMTMANN, A. 2009. EZ–Rhizo: integrated software for the fast and accurate measurement of root system architecture. In Plant Journal, vol. 57, pp. 945–956. DOI: 10.1111/j.1365-313X.2008.03739.x10.1111/j.1365-313X.2008.03739.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263522700015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3ASHOUR, N.I. – ABD-EL’HAMID, A.E.H.M. 1970. Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. In Plant and Soil, vol. 3, pp. 493–495. DOI: 10.1007/BF0137824010.1007/BF01378240BASAL, H. – BEBELI, P. – SMITH, C.W. – THAXTON, P. 2003. Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. In Crop Science, vol. 43, pp. 1983–1988. DOI:10.2135/cropsci2003.198310.2135/cropsci2003.1983BATES, L.S. – WALDEEN, R.P. – TEARE, I.D. 1973. Rapid determination of free proline for water-stress studies. In Plant and Soil, vol. 39, pp. 205–207. DOI: 10.1007/BF0001806010.1007/BF00018060DARWISH, E. – MOTTALEB, S.A. – OMARA, M. – SAFWAT, G. 2016. Effect of salt stress on root plasticity and expression of ion transporter genes in tomato plants. In International Journal of Botany and Research (IJBR), vol. 6, pp. 13–26. Available from: https://www.researchgate.net/profile/Heba_Ibrahim4/publication/299289414_EFFECT_OF_SALT_STRESS_ON_ROOT_PLASTICITY_AND_EXPRESSION_OF_ION_TRANSPORTER_GENES_IN_TOMATO_PLANTS/links/570d581a08ae2b772e43200e/EFFECT-OF-SALT-STRESS-ON-ROOT-PLASTICITY-AND-EXPRESSION-OF-ION-TRANSPORTER-GENES-IN-TOMATO-PLANTS.pdfDAVENPORT, R.J. – MUNOZ-MAYOR, A. – JHA, D. – ESSAH, P.A. – RUS, A. – TESTER, M. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. In Plant, Cell and Environment, vol. 30, pp. 497–507. DOI: 10.1111/j.1365-3040.2007.01637.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000244419700011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1365-3040.2007.01637.xDEVIENNE-BARRET, F. – RICHARD-MOLARD, C. – CHELLE, M. – MAURY, O. – NEY, B. 2006. Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. In Plant and Soil, vol. 280, pp. 253–266. DOI: 10.1007/s11104-005-3224-110.1007/s11104-005-3224-1EL-KADI, D.A. – AFIAH, S.A. – ALY, M.A. – BADRAN, A.E. 2006. Bulked segregant analysis to develop molecular markers for salt tolerance in Egyptian cotton. In Arab Journal of Biotechnology, vol. 9, pp. 129–142. Available from: https://www.researchgate.net/profile/Mohammed_Aly2/publication/228936120_Bulked_segregant_analysis_to_develop_molecular_markers_for_salt_tolerance_in_Egyptian_cotton/links/0c96052de7b9fcfc03000000.pdfEL-ZAHAB, A.A.A. 1971. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. In Zeitschrift für Acker- und Pflanzenbau, vol. 133, pp. 308–314.GARCIADEBLAS, B. – SENN, M.E. – BANUELOS, M.A. – RODRÍGUEZ-NAVARRO, A. 2003. Sodium transport and HKT transporters: the rice model. In Plant Journal, vol. 34, pp. 788–801. DOI: 10.1046/j.1365-313X.2003.01764.x10.1046/j.1365-313X.2003.01764.xGORHAM, J. – LAUCHLI, A. – LEIDI, E.O. 2010. Plant responses to salinity. In STEWART, J.M. ‒ OOSTERHUIS, D.M. ‒ HEITHOLT, J.J. ‒ MAUNEY, J.R. (Eds.) Physiology of Cotton. London : Springer, pp. 129–141. DOI: 10.1007/978-90-481-3195-2_1310.1007/978-90-481-3195-2_13HE, G. – SHEN, G. – PASAPULA, V. – LUO, J. – VENKATARAMANI, S. – QIU, X. – KUPPU, S. – KORNYEYEV, D. – HOLADAY, A.S. – AULD, D. – BLUMWALD, E. – ZHANG, H. 2007. Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. In Journal of Cotton Science, vol. 11, pp. 266–274. Available from: http://www.cotton.org/journal/2007-11/4/upload/jcs11-266.pdfJULKOWSKA, M.M. – TESTERINK, C. 2015. Tuning plant signaling and growth to survive salt. In Trends in Plant Science, vol. 20, pp. 586–594. DOI: http://dx.doi.org/10.1016/j.tplants.2015.06.00810.1016/j.tplants.2015.06.008KARLEY, A.J. – LEIGH, R.A. – SANDERS, D. 2000. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. In Plant Physiology, vol. 122, pp. 835–844. DOI: 10.1104/pp.122.3.835.10.1104/pp.122.3.835MUNNS, R. – TESTER, M. 2008. Mechanisms of salinity tolerance. In Annual Review of Plant Biology, vol. 59, pp. 651–681. DOI: 10.1146/annurev.arplant.59.032607.092911http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000256593200026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1146/annurev.arplant.59.032607.092911MURASHIGE, T. – SKOOG, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. In Physiologiae Plantarum, vol. 15, pp. 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xOOSTERHUIS, D.M. – WULLSCHLEGER, S.D. 1988. Drought tolerance and osmotic adjustment of various crops in response to water stress. In Arkansas Farm Research, vol. 37, pp. 12.PACE, P.F. – CRALLE, H.T. – EL-HALAWANY, S.H. – COTHREN, J.T. – SENSEMAN, S.A. 1999. Drought-induced changes in shoot and root growth of young cotton plants. In Journal of Cotton Science, vol. 3, pp. 183–187. Available from https://www.cotton.org/journal/1999-03/4/upload/jcs03-183.pdf. [accessed 23 July 2016].QADIR, M. – QUILLÉROU, E. – NANGIA, V. – MURTAZA, G. – SINGH, M. – THOMAS, R.J. – DRECHSEL, P. – NOBLE, A.D. 2014. Economics of salt-induced land degradation and restoration. In Natural Resources Forum, vol. 38, pp. 282–295. DOI: 10.1111/1477-8947.1205410.1111/1477-8947.12054QUISENBERRY, J.E. – JORDAN, W.R. – ROARK, B.A. – FRYREAR, D.W. 1981. Exotic cottons as genetic sources for drought resistance. In Crop Science, vol. 21, pp. 889–895. DOI:10.2135/cropsci1981.0011183X002100060022x10.2135/cropsci1981.0011183X002100060022xQUISENBERRY, J.E. – ROARK, B.A. – McMICHAEL, B.L. 1982. Use of transpiration decline curves to identify drought-tolerant cotton germplasm. In Crop Science, vol. 22, pp. 918–922. DOI:10.2135/cropsci1982.0011183X002200050004x10.2135/cropsci1982.0011183X002200050004xROY, S.J. – NEGRÃO, S. – TESTER, M. 2014. Salt resistant crop plants. In Current Opinion in Biotechnology, vol. 26, pp. 115–124. DOI: 10.1016/j.copbio.2013.12.00410.1016/j.copbio.2013.12.004SHABALA, S. – CUIN, T.A. 2008. Potassium transport and plant salt tolerance. In Physiologiae Plantarum, vol. 133, pp. 651–669. DOI: 10.1111/j.1399-3054.2007.01008.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000257515300004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1399-3054.2007.01008.xSHABALA, S. – MUNNS, R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In SHABALA, S. (Ed.) Plant Stress Physiology. Oxfod : CAB International, pp. 59–93. DOI: 10.1079/9781845939953.005910.1079/9781845939953.0059SINCLAIR, T.R. – LUDLOW, M.M. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. In Australian Journal of Plant Physiology, vol. 12, pp. 213–218. DOI: 10.1071/PP985021310.1071/PP9850213STEELE, K.A. – PRICE. A.H. – WITCOMBE, J.R. – SHRESTHA, R. – SINGH, B.N. – GIBBONS, J.M. – VIRK, D.S. 2013. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. In Theoretical and Applied Genetics, vol. 126, pp. 101–108. DOI: 10.1007/s00122-012-1963-yhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000313056900010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1007/s00122-012-1963-yTAYLOR, H.M. – UPCHURCH, D.R. – BROWN, J.M. – ROGERS, H.H. 1991. Some methods of root investigation. In McMICHAEL, B.L. ‒ PERSSON, H. (Eds.) Plant roots and Their Environment. New York : Elsevier Science Publishers, Inc., pp. 553–564. DOI:10.1016/B978-0-444-89104-4.50075-X10.1016/B978-0-444-89104-4.50075-XTUBEROSA, R. – SANGUINETI, M.C. – LANDI, P. – GIULIANI, M.M. – SALVI, S. – CONTI, S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. In Plant Molecular Biology, vol. 48, pp. 697–712. DOI: 10.1023/A:101489760767010.1023/A:1014897607670UDAYAKUMAR, M. – RAO, R.C.N. – WRIGHT, G.C. – RAMASWAMY, G.C. – ASHOK, R.S. – GANGADHAR, G.C. – AFTAB HUSSAIN, I.S. 1998. Measurement of transpiration efficiency in field conditions. In Journal of Plant Physiology and Biochemistry, vol. 1, pp. 69–75.UGA, Y. – SUGIMOTO, K. – OGAWA, S. – RANE, J. – ISHITANI, M. – HARA, N. – KITOMI, Y. – INUKAI, Y. – ONO, K. – KANNO, N. – INOUE, H. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. In Nature Genetics, vol. 45, pp. 1097–1102. DOI:10.1038/ng.272510.1038/ng.2725http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000323748200024&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3WEATHERLY, P.E. 1950. Studies in the water relations of the cotton plant. The field measurement of water deficits in leaves. In New Phytologist, vol. 49, pp. 81–97. DOI: 10.1111/j.1469-8137.1950.tb05146.x10.1111/j.1469-8137.1950.tb05146.xZHONG, H. – LAUCHLI, A. 1993. Spatial and temporal aspects of growth in the primary root of cotton seedlings: Effects of NaCl and CaCl2. In Journal of Experimental Botany, vol. 44, pp. 763–771. DOI: 10.1093/jxb/44.4.76310.1093/jxb/44.4.763 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agriculture de Gruyter

Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity

Loading next page...
 
/lp/de-gruyter/phenotyping-root-system-architecture-of-cotton-gossypium-barbadense-l-tlf06V8rGd
Publisher
de Gruyter
Copyright
© 2017 Shady A. Mottaleb et al., published by De Gruyter Open
ISSN
1338-4376
eISSN
1338-4376
DOI
10.1515/agri-2017-0014
Publisher site
See Article on Publisher Site

Abstract

REFERENCESABOUKHEIR, E. – SHESHSHAYEE, M.S. – UDAYAKUMAR, M. 2008. AAB International Conference on Resource Capture by Crops: Integrated Approach, 14–16 September 2008, University of Nottingham at Sutton Bonington.ABUL-NAAS, A.A. – OMRAN, M.S. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. In Zeitschrift für Acker-und Pflanzenbau, vol. 140, pp. 229–236.AHMED, F.M. 1994. Effect of saline water irrigation at different stages of growth on cotton plant. In Assiut Journal of Agricultural Sciences, vol. 25, pp. 63–74.ARMENGAUD, P. – ZAMBAUX, K. – HILLS, A. – SULPICE, R. – PATTISON, R.J. – BLATT, M.R. – AMTMANN, A. 2009. EZ–Rhizo: integrated software for the fast and accurate measurement of root system architecture. In Plant Journal, vol. 57, pp. 945–956. DOI: 10.1111/j.1365-313X.2008.03739.x10.1111/j.1365-313X.2008.03739.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263522700015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3ASHOUR, N.I. – ABD-EL’HAMID, A.E.H.M. 1970. Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. In Plant and Soil, vol. 3, pp. 493–495. DOI: 10.1007/BF0137824010.1007/BF01378240BASAL, H. – BEBELI, P. – SMITH, C.W. – THAXTON, P. 2003. Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. In Crop Science, vol. 43, pp. 1983–1988. DOI:10.2135/cropsci2003.198310.2135/cropsci2003.1983BATES, L.S. – WALDEEN, R.P. – TEARE, I.D. 1973. Rapid determination of free proline for water-stress studies. In Plant and Soil, vol. 39, pp. 205–207. DOI: 10.1007/BF0001806010.1007/BF00018060DARWISH, E. – MOTTALEB, S.A. – OMARA, M. – SAFWAT, G. 2016. Effect of salt stress on root plasticity and expression of ion transporter genes in tomato plants. In International Journal of Botany and Research (IJBR), vol. 6, pp. 13–26. Available from: https://www.researchgate.net/profile/Heba_Ibrahim4/publication/299289414_EFFECT_OF_SALT_STRESS_ON_ROOT_PLASTICITY_AND_EXPRESSION_OF_ION_TRANSPORTER_GENES_IN_TOMATO_PLANTS/links/570d581a08ae2b772e43200e/EFFECT-OF-SALT-STRESS-ON-ROOT-PLASTICITY-AND-EXPRESSION-OF-ION-TRANSPORTER-GENES-IN-TOMATO-PLANTS.pdfDAVENPORT, R.J. – MUNOZ-MAYOR, A. – JHA, D. – ESSAH, P.A. – RUS, A. – TESTER, M. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. In Plant, Cell and Environment, vol. 30, pp. 497–507. DOI: 10.1111/j.1365-3040.2007.01637.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000244419700011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1365-3040.2007.01637.xDEVIENNE-BARRET, F. – RICHARD-MOLARD, C. – CHELLE, M. – MAURY, O. – NEY, B. 2006. Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. In Plant and Soil, vol. 280, pp. 253–266. DOI: 10.1007/s11104-005-3224-110.1007/s11104-005-3224-1EL-KADI, D.A. – AFIAH, S.A. – ALY, M.A. – BADRAN, A.E. 2006. Bulked segregant analysis to develop molecular markers for salt tolerance in Egyptian cotton. In Arab Journal of Biotechnology, vol. 9, pp. 129–142. Available from: https://www.researchgate.net/profile/Mohammed_Aly2/publication/228936120_Bulked_segregant_analysis_to_develop_molecular_markers_for_salt_tolerance_in_Egyptian_cotton/links/0c96052de7b9fcfc03000000.pdfEL-ZAHAB, A.A.A. 1971. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. In Zeitschrift für Acker- und Pflanzenbau, vol. 133, pp. 308–314.GARCIADEBLAS, B. – SENN, M.E. – BANUELOS, M.A. – RODRÍGUEZ-NAVARRO, A. 2003. Sodium transport and HKT transporters: the rice model. In Plant Journal, vol. 34, pp. 788–801. DOI: 10.1046/j.1365-313X.2003.01764.x10.1046/j.1365-313X.2003.01764.xGORHAM, J. – LAUCHLI, A. – LEIDI, E.O. 2010. Plant responses to salinity. In STEWART, J.M. ‒ OOSTERHUIS, D.M. ‒ HEITHOLT, J.J. ‒ MAUNEY, J.R. (Eds.) Physiology of Cotton. London : Springer, pp. 129–141. DOI: 10.1007/978-90-481-3195-2_1310.1007/978-90-481-3195-2_13HE, G. – SHEN, G. – PASAPULA, V. – LUO, J. – VENKATARAMANI, S. – QIU, X. – KUPPU, S. – KORNYEYEV, D. – HOLADAY, A.S. – AULD, D. – BLUMWALD, E. – ZHANG, H. 2007. Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. In Journal of Cotton Science, vol. 11, pp. 266–274. Available from: http://www.cotton.org/journal/2007-11/4/upload/jcs11-266.pdfJULKOWSKA, M.M. – TESTERINK, C. 2015. Tuning plant signaling and growth to survive salt. In Trends in Plant Science, vol. 20, pp. 586–594. DOI: http://dx.doi.org/10.1016/j.tplants.2015.06.00810.1016/j.tplants.2015.06.008KARLEY, A.J. – LEIGH, R.A. – SANDERS, D. 2000. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. In Plant Physiology, vol. 122, pp. 835–844. DOI: 10.1104/pp.122.3.835.10.1104/pp.122.3.835MUNNS, R. – TESTER, M. 2008. Mechanisms of salinity tolerance. In Annual Review of Plant Biology, vol. 59, pp. 651–681. DOI: 10.1146/annurev.arplant.59.032607.092911http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000256593200026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1146/annurev.arplant.59.032607.092911MURASHIGE, T. – SKOOG, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. In Physiologiae Plantarum, vol. 15, pp. 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xOOSTERHUIS, D.M. – WULLSCHLEGER, S.D. 1988. Drought tolerance and osmotic adjustment of various crops in response to water stress. In Arkansas Farm Research, vol. 37, pp. 12.PACE, P.F. – CRALLE, H.T. – EL-HALAWANY, S.H. – COTHREN, J.T. – SENSEMAN, S.A. 1999. Drought-induced changes in shoot and root growth of young cotton plants. In Journal of Cotton Science, vol. 3, pp. 183–187. Available from https://www.cotton.org/journal/1999-03/4/upload/jcs03-183.pdf. [accessed 23 July 2016].QADIR, M. – QUILLÉROU, E. – NANGIA, V. – MURTAZA, G. – SINGH, M. – THOMAS, R.J. – DRECHSEL, P. – NOBLE, A.D. 2014. Economics of salt-induced land degradation and restoration. In Natural Resources Forum, vol. 38, pp. 282–295. DOI: 10.1111/1477-8947.1205410.1111/1477-8947.12054QUISENBERRY, J.E. – JORDAN, W.R. – ROARK, B.A. – FRYREAR, D.W. 1981. Exotic cottons as genetic sources for drought resistance. In Crop Science, vol. 21, pp. 889–895. DOI:10.2135/cropsci1981.0011183X002100060022x10.2135/cropsci1981.0011183X002100060022xQUISENBERRY, J.E. – ROARK, B.A. – McMICHAEL, B.L. 1982. Use of transpiration decline curves to identify drought-tolerant cotton germplasm. In Crop Science, vol. 22, pp. 918–922. DOI:10.2135/cropsci1982.0011183X002200050004x10.2135/cropsci1982.0011183X002200050004xROY, S.J. – NEGRÃO, S. – TESTER, M. 2014. Salt resistant crop plants. In Current Opinion in Biotechnology, vol. 26, pp. 115–124. DOI: 10.1016/j.copbio.2013.12.00410.1016/j.copbio.2013.12.004SHABALA, S. – CUIN, T.A. 2008. Potassium transport and plant salt tolerance. In Physiologiae Plantarum, vol. 133, pp. 651–669. DOI: 10.1111/j.1399-3054.2007.01008.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000257515300004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1111/j.1399-3054.2007.01008.xSHABALA, S. – MUNNS, R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In SHABALA, S. (Ed.) Plant Stress Physiology. Oxfod : CAB International, pp. 59–93. DOI: 10.1079/9781845939953.005910.1079/9781845939953.0059SINCLAIR, T.R. – LUDLOW, M.M. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. In Australian Journal of Plant Physiology, vol. 12, pp. 213–218. DOI: 10.1071/PP985021310.1071/PP9850213STEELE, K.A. – PRICE. A.H. – WITCOMBE, J.R. – SHRESTHA, R. – SINGH, B.N. – GIBBONS, J.M. – VIRK, D.S. 2013. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. In Theoretical and Applied Genetics, vol. 126, pp. 101–108. DOI: 10.1007/s00122-012-1963-yhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000313056900010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1007/s00122-012-1963-yTAYLOR, H.M. – UPCHURCH, D.R. – BROWN, J.M. – ROGERS, H.H. 1991. Some methods of root investigation. In McMICHAEL, B.L. ‒ PERSSON, H. (Eds.) Plant roots and Their Environment. New York : Elsevier Science Publishers, Inc., pp. 553–564. DOI:10.1016/B978-0-444-89104-4.50075-X10.1016/B978-0-444-89104-4.50075-XTUBEROSA, R. – SANGUINETI, M.C. – LANDI, P. – GIULIANI, M.M. – SALVI, S. – CONTI, S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. In Plant Molecular Biology, vol. 48, pp. 697–712. DOI: 10.1023/A:101489760767010.1023/A:1014897607670UDAYAKUMAR, M. – RAO, R.C.N. – WRIGHT, G.C. – RAMASWAMY, G.C. – ASHOK, R.S. – GANGADHAR, G.C. – AFTAB HUSSAIN, I.S. 1998. Measurement of transpiration efficiency in field conditions. In Journal of Plant Physiology and Biochemistry, vol. 1, pp. 69–75.UGA, Y. – SUGIMOTO, K. – OGAWA, S. – RANE, J. – ISHITANI, M. – HARA, N. – KITOMI, Y. – INUKAI, Y. – ONO, K. – KANNO, N. – INOUE, H. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. In Nature Genetics, vol. 45, pp. 1097–1102. DOI:10.1038/ng.272510.1038/ng.2725http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000323748200024&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3WEATHERLY, P.E. 1950. Studies in the water relations of the cotton plant. The field measurement of water deficits in leaves. In New Phytologist, vol. 49, pp. 81–97. DOI: 10.1111/j.1469-8137.1950.tb05146.x10.1111/j.1469-8137.1950.tb05146.xZHONG, H. – LAUCHLI, A. 1993. Spatial and temporal aspects of growth in the primary root of cotton seedlings: Effects of NaCl and CaCl2. In Journal of Experimental Botany, vol. 44, pp. 763–771. DOI: 10.1093/jxb/44.4.76310.1093/jxb/44.4.763

Journal

Agriculturede Gruyter

Published: Dec 1, 2017

There are no references for this article.