Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractEncryption protects sensitive data from unauthorized access, yet is not sufficient when users are forced to surrender keys under duress. In contrast, plausible deniability enables users to not only encrypt data but also deny its existence when challenged. Most existing plausible deniability work (e.g. the successful and unfortunately now-defunct TrueCrypt) tackles “single snapshot” adversaries, and cannot handle the more realistic scenario of adversaries gaining access to a device at multiple time points. Such “multi-snapshot” adversaries can simply observe modifications between snapshots and detect the existence of hidden data. Existing ideas handling “multi-snapshot” scenarios feature prohibitive overheads when deployed on practically-sized disks. This is mostly due to a lack of data locality inherent in certain standard access-randomization mechanisms, one of the building blocks used to ensure plausible deniability.In this work, we show that such randomization is not necessary for strong plausible deniability. Instead, it can be replaced by a canonical form that permits most of writes to be done sequentially. This has two key advantages: 1) it reduces the impact of seek due to random accesses; 2) it reduces the overall number of physical blocks that need to be written for each logical write. As a result, PD-DM increases I/O throughput by orders of magnitude (10–100× in typical setups) over existing work while maintaining strong plausible deniability against multi-snapshot adversaries.Notably, PD-DM is the first plausible-deniable system getting within reach of the performance of standard encrypted volumes (dm-crypt) for random I/O.
Proceedings on Privacy Enhancing Technologies – de Gruyter
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.