Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina)

Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza,... Abstract Well constrained numerical ages of alluvial fan sediments are key to understanding the chronology of alluvial episodes and tectonic activity at the front of the Andean Precordillera. We tested the application of radiocarbon and optically stimulated luminescence (OSL) dating in the distal part of an alluvial fan five kilometers north of Mendoza. For OSL dating a large number of aliquots (n > 70) — each composed of ∼50 quartz grains — were measured in order to obtain reliable burial ages despite scattered dose distributions. Owing to a feldspar contamination in all samples, an infrared stimulation was inserted before each OSL measurement, which reduced the feldspar OSL signal successfully. By using the minimum age model we obtained stratigraphically consistent burial ages of alluvial deposits in a depth profile. The uppermost ∼1 m of sediment is composed of debris flow deposits buried 770±76 years ago. Three plant remnants used for radiocarbon dating from the same layer, however, yielded ages younger than 350 years, which are interpreted to underestimate the depositional age. Underneath the debris flow, a major unconformity cuts a series of distal alluvial fan sediments with interstratified floodplain deposits, which are composed of sandy and calciterich silt layers, respectively. Three samples from this unit which were distributed over one meter of sediment thickness yielded statistically concordant OSL ages of 12.3±1.2 ka, 12.3±1.2 ka, and 11.7±1.1 ka. The deposition of these sediments during the latest Pleistocene coincides with a phase of cool and humid climate, which occurred before the alluvial fan propagated farther into the foreland. The overlying debris flow sediments are associated with alluvial fan incision during the arid Late Holocene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochronometria de Gruyter

Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina)

Loading next page...
 
/lp/de-gruyter/optical-dating-of-alluvial-deposits-at-the-orogenic-front-of-the-2vPv53NfsQ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
de Gruyter
Copyright
Copyright © 2012 by the
ISSN
1897-1695
eISSN
1897-1695
DOI
10.2478/s13386-011-0050-5
Publisher site
See Article on Publisher Site

Abstract

Abstract Well constrained numerical ages of alluvial fan sediments are key to understanding the chronology of alluvial episodes and tectonic activity at the front of the Andean Precordillera. We tested the application of radiocarbon and optically stimulated luminescence (OSL) dating in the distal part of an alluvial fan five kilometers north of Mendoza. For OSL dating a large number of aliquots (n > 70) — each composed of ∼50 quartz grains — were measured in order to obtain reliable burial ages despite scattered dose distributions. Owing to a feldspar contamination in all samples, an infrared stimulation was inserted before each OSL measurement, which reduced the feldspar OSL signal successfully. By using the minimum age model we obtained stratigraphically consistent burial ages of alluvial deposits in a depth profile. The uppermost ∼1 m of sediment is composed of debris flow deposits buried 770±76 years ago. Three plant remnants used for radiocarbon dating from the same layer, however, yielded ages younger than 350 years, which are interpreted to underestimate the depositional age. Underneath the debris flow, a major unconformity cuts a series of distal alluvial fan sediments with interstratified floodplain deposits, which are composed of sandy and calciterich silt layers, respectively. Three samples from this unit which were distributed over one meter of sediment thickness yielded statistically concordant OSL ages of 12.3±1.2 ka, 12.3±1.2 ka, and 11.7±1.1 ka. The deposition of these sediments during the latest Pleistocene coincides with a phase of cool and humid climate, which occurred before the alluvial fan propagated farther into the foreland. The overlying debris flow sediments are associated with alluvial fan incision during the arid Late Holocene.

Journal

Geochronometriade Gruyter

Published: Mar 1, 2012

There are no references for this article.