Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On three-variable expanders over finite valuation rings

On three-variable expanders over finite valuation rings AbstractLet ℛ{\mathcal{R}} be a finite valuation ring of order qr{q^{r}}.In this paper, we prove that for any quadratic polynomial f⁢(x,y,z)∈ℛ⁢[x,y,z]{f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form a⁢x⁢y+R⁢(x)+S⁢(y)+T⁢(z){axy+R(x)+S(y)+T(z)} for some one-variable polynomials R,S,T{R,S,T}, we have|f⁢(A,B,C)|≫min⁡{qr,|A|⁢|B|⁢|C|q2⁢r-1}|f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}}for any A,B,C⊂ℛ{A,B,C\subset\mathcal{R}}.We also study the sum-product type problems over finite valuation ring ℛ{\mathcal{R}}. More precisely, we show that for any A⊂ℛ{A\subset\mathcal{R}} with |A|≫qr-13{|A|\gg q^{r-\frac{1}{3}}} thenmax⁡{|A⁢A|,|Ad+Ad|}{\max\{|AA|,|A^{d}+A^{d}|\}}, max⁡{|A+A|,|A2+A2|}{\max\{|A+A|,|A^{2}+A^{2}|\}}, max⁡{|A-A|,|A⁢A+A⁢A|}≫|A|23⁢qr3{\max\{|A-A|,|AA+AA|\}\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}},and |f⁢(A)+A|≫|A|23⁢qr3{|f(A)+A|\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} for any one variable quadratic polynomial f. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Forum Mathematicum de Gruyter

On three-variable expanders over finite valuation rings

Loading next page...
 
/lp/de-gruyter/on-three-variable-expanders-over-finite-valuation-rings-NY23pyZAr4

References (21)

Publisher
de Gruyter
Copyright
© 2020 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0933-7741
eISSN
1435-5337
DOI
10.1515/forum-2020-0203
Publisher site
See Article on Publisher Site

Abstract

AbstractLet ℛ{\mathcal{R}} be a finite valuation ring of order qr{q^{r}}.In this paper, we prove that for any quadratic polynomial f⁢(x,y,z)∈ℛ⁢[x,y,z]{f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form a⁢x⁢y+R⁢(x)+S⁢(y)+T⁢(z){axy+R(x)+S(y)+T(z)} for some one-variable polynomials R,S,T{R,S,T}, we have|f⁢(A,B,C)|≫min⁡{qr,|A|⁢|B|⁢|C|q2⁢r-1}|f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}}for any A,B,C⊂ℛ{A,B,C\subset\mathcal{R}}.We also study the sum-product type problems over finite valuation ring ℛ{\mathcal{R}}. More precisely, we show that for any A⊂ℛ{A\subset\mathcal{R}} with |A|≫qr-13{|A|\gg q^{r-\frac{1}{3}}} thenmax⁡{|A⁢A|,|Ad+Ad|}{\max\{|AA|,|A^{d}+A^{d}|\}}, max⁡{|A+A|,|A2+A2|}{\max\{|A+A|,|A^{2}+A^{2}|\}}, max⁡{|A-A|,|A⁢A+A⁢A|}≫|A|23⁢qr3{\max\{|A-A|,|AA+AA|\}\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}},and |f⁢(A)+A|≫|A|23⁢qr3{|f(A)+A|\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} for any one variable quadratic polynomial f.

Journal

Forum Mathematicumde Gruyter

Published: Jan 1, 2021

There are no references for this article.