Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On the traces of certain classes of permuting mappings in rings

On the traces of certain classes of permuting mappings in rings Abstract Let R be a semiprime ring with center Z and extended centroid C . For a fixed integer n ≥ 2, the trace δ : R → R ${\delta \colon R\rightarrow R}$ of a permuting n -additive mapping D : R n → R ${D\colon R^n\rightarrow R}$ is defined as δ ( x ) = D ( x , ... , x ) ${\delta (x)=D(x,\ldots ,x)}$ for all x ∈ R . The notion of permuting n -derivation was introduced by Park (J. Chungcheong Math. Soc. 22 (2009), no.3, 451–458) as follows: a permuting n -additive mapping Δ : R n → R ${\Delta \colon R^n\rightarrow R}$ is said to be permuting n -derivation if Δ ( x 1 , x 2 , ⋯ , x i x i ' , ⋯ , x n ) = Δ ( x 1 , x 2 , ⋯ , x i , ⋯ , x n ) x i ' + x i Δ ( x 1 , x 2 , ⋯ , x i ' , ⋯ , x n ) for all x i , x i ' ∈ R . $ \Delta (x_1,x_2,\dots , x_ix_i^{\prime },\dots , x_n)=\Delta (x_1,x_2,\dots , x_i,\dots , x_n)x_i^{\prime }+ x_i\Delta (x_1,x_2,\dots , x_i^{\prime },\dots , x_n)\quad \text{for all }x_i ,x_i^{\prime } \in R. $ A permuting n -additive mapping Ω : R n → R ${\Omega \colon R^n\rightarrow R}$ is known to be a permuting generalized n -derivation if there exists a permuting n -derivation Δ : R n → R ${\Delta \colon R^n\rightarrow R}$ such that Ω ( x 1 , x 2 , ⋯ , x i x i ' , ⋯ , x n ) = Ω ( x 1 , x 2 , ⋯ , x i , ⋯ , x n ) x i ' + x i Δ ( x 1 , x 2 , ⋯ , x i ' , ⋯ , x n ) for all x i , x i ' ∈ R . $ \Omega (x_1,x_2,\dots , x_ix_i^{\prime },\dots , x_n)=\Omega (x_1,x_2,\dots , x_i,\dots , x_n)x_i^{\prime }+ x_i\Delta (x_1,x_2,\dots , x_i^{\prime },\dots , x_n)\quad \text{for all }x_i ,x_i^{\prime } \in R. $ The main result of this paper states that if I is a nonzero ideal of a semiprime ring R and Δ : R n → R ${\Delta :R^n\rightarrow R}$ is a permuting n -derivation such that Δ ( I , ... , I ) ≠ { 0 } ${\Delta (I,\ldots ,I)\ne \lbrace 0\rbrace }$ and ( δ ( x ) , x ) = 0 ${(\delta (x),x)=0}$ for all x ∈ I , where δ is the trace of Δ, then R contains a nonzero central ideal. Furthermore, some related results are also proven. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Georgian Mathematical Journal de Gruyter

On the traces of certain classes of permuting mappings in rings

Loading next page...
 
/lp/de-gruyter/on-the-traces-of-certain-classes-of-permuting-mappings-in-rings-2E8gOEGTPY

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
de Gruyter
Copyright
Copyright © 2016 by the
ISSN
1072-947X
eISSN
1572-9176
DOI
10.1515/gmj-2015-0051
Publisher site
See Article on Publisher Site

Abstract

Abstract Let R be a semiprime ring with center Z and extended centroid C . For a fixed integer n ≥ 2, the trace δ : R → R ${\delta \colon R\rightarrow R}$ of a permuting n -additive mapping D : R n → R ${D\colon R^n\rightarrow R}$ is defined as δ ( x ) = D ( x , ... , x ) ${\delta (x)=D(x,\ldots ,x)}$ for all x ∈ R . The notion of permuting n -derivation was introduced by Park (J. Chungcheong Math. Soc. 22 (2009), no.3, 451–458) as follows: a permuting n -additive mapping Δ : R n → R ${\Delta \colon R^n\rightarrow R}$ is said to be permuting n -derivation if Δ ( x 1 , x 2 , ⋯ , x i x i ' , ⋯ , x n ) = Δ ( x 1 , x 2 , ⋯ , x i , ⋯ , x n ) x i ' + x i Δ ( x 1 , x 2 , ⋯ , x i ' , ⋯ , x n ) for all x i , x i ' ∈ R . $ \Delta (x_1,x_2,\dots , x_ix_i^{\prime },\dots , x_n)=\Delta (x_1,x_2,\dots , x_i,\dots , x_n)x_i^{\prime }+ x_i\Delta (x_1,x_2,\dots , x_i^{\prime },\dots , x_n)\quad \text{for all }x_i ,x_i^{\prime } \in R. $ A permuting n -additive mapping Ω : R n → R ${\Omega \colon R^n\rightarrow R}$ is known to be a permuting generalized n -derivation if there exists a permuting n -derivation Δ : R n → R ${\Delta \colon R^n\rightarrow R}$ such that Ω ( x 1 , x 2 , ⋯ , x i x i ' , ⋯ , x n ) = Ω ( x 1 , x 2 , ⋯ , x i , ⋯ , x n ) x i ' + x i Δ ( x 1 , x 2 , ⋯ , x i ' , ⋯ , x n ) for all x i , x i ' ∈ R . $ \Omega (x_1,x_2,\dots , x_ix_i^{\prime },\dots , x_n)=\Omega (x_1,x_2,\dots , x_i,\dots , x_n)x_i^{\prime }+ x_i\Delta (x_1,x_2,\dots , x_i^{\prime },\dots , x_n)\quad \text{for all }x_i ,x_i^{\prime } \in R. $ The main result of this paper states that if I is a nonzero ideal of a semiprime ring R and Δ : R n → R ${\Delta :R^n\rightarrow R}$ is a permuting n -derivation such that Δ ( I , ... , I ) ≠ { 0 } ${\Delta (I,\ldots ,I)\ne \lbrace 0\rbrace }$ and ( δ ( x ) , x ) = 0 ${(\delta (x),x)=0}$ for all x ∈ I , where δ is the trace of Δ, then R contains a nonzero central ideal. Furthermore, some related results are also proven.

Journal

Georgian Mathematical Journalde Gruyter

Published: Mar 1, 2016

There are no references for this article.