Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractIn this paper, we focus on shape partitions. We show that for any fixed k, one can symbolically characterize the shape partition on a k × n rectangular grid by a context-free grammar. We explicitly give this grammar for k = 2 and k = 3 (for k = 1, this corresponds to compositions of integers). From these grammars, we deduce the number of shape partitions for the k × n rectangular grids for k ∈ {1, 2, 3} and every n, as well as the limiting Gaussian distribution of the number of connected components. This also enables us to randomly and uniformly generate shape partitions of large size.
Pure Mathematics and Applications – de Gruyter
Published: Jun 1, 2022
Keywords: analytic combinatorics; random sampling; 05A05; 05A16
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.