Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract In many online communities, it is the norm to redact names and other sensitive text from posted screenshots. Sometimes solid bars are used; sometimes a blur or other image transform is used. We consider the effectiveness of two popular image transforms - mosaicing (also known as pixelization) and blurring - for redaction of text. Our main finding is that we can use a simple but powerful class of statistical models - so-called hidden Markov models (HMMs) - to recover both short and indefinitely long instances of redacted text. Our approach borrows on the success of HMMs for automatic speech recognition, where they are used to recover sequences of phonemes from utterances of speech. Here we use HMMs in an analogous way to recover sequences of characters from images of redacted text. We evaluate an implementation of our system against multiple typefaces, font sizes, grid sizes, pixel offsets, and levels of noise. We also decode numerous real-world examples of redacted text. We conclude that mosaicing and blurring, despite their widespread usage, are not viable approaches for text redaction.
Proceedings on Privacy Enhancing Technologies – de Gruyter
Published: Oct 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.