Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On the extreme values of M/M/m queueing systems

On the extreme values of M/M/m queueing systems AbstractThe asymptotic behavior of extremevalues of queueing systems is studied. For a system M/M/m{{M/M/m}},1≤m<∞{1\leq m<\infty}, the weak convergence of extremevalues of an actual waiting time and a statement of the type of thelaw of the iterated logarithm are established. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Georgian Mathematical Journal de Gruyter

On the extreme values of M/M/m queueing systems

Georgian Mathematical Journal , Volume 28 (6): 8 – Dec 1, 2021

Loading next page...
 
/lp/de-gruyter/on-the-extreme-values-of-m-m-m-queueing-systems-3R0sh0ZTKu
Publisher
de Gruyter
Copyright
© 2021 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1572-9176
eISSN
1572-9176
DOI
10.1515/gmj-2021-2095
Publisher site
See Article on Publisher Site

Abstract

AbstractThe asymptotic behavior of extremevalues of queueing systems is studied. For a system M/M/m{{M/M/m}},1≤m<∞{1\leq m<\infty}, the weak convergence of extremevalues of an actual waiting time and a statement of the type of thelaw of the iterated logarithm are established.

Journal

Georgian Mathematical Journalde Gruyter

Published: Dec 1, 2021

Keywords: Extreme values; limit theorem; 60K25; 60F15; 60G70

There are no references for this article.