Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractPersonal data garnered from various sensors are often offloaded by applications to the cloud for analytics. This leads to a potential risk of disclosing private user information. We observe that the analytics run on the cloud are often limited to a machine learning model such as predicting a user’s activity using an activity classifier. We present Olympus, a privacy framework that limits the risk of disclosing private user information by obfuscating sensor data while minimally affecting the functionality the data are intended for. Olympus achieves privacy by designing a utility aware obfuscation mechanism, where privacy and utility requirements are modeled as adversarial networks. By rigorous and comprehensive evaluation on a real world app and on benchmark datasets, we show that Olympus successfully limits the disclosure of private information without significantly affecting functionality of the application.
Proceedings on Privacy Enhancing Technologies – de Gruyter
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.