Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractThe aim of the present work is to propose a user friendly approach based on homotopy analysis method combined with Sumudu transform method to drive analytical and numerical solutions of the fractional Newell-Whitehead-Segel amplitude equation which describes the appearance of the stripe patterns in 2-dimensional systems. The coupling of homotopy analysis method with Sumudu transform algorithm makes the calculation very easy. The proposed technique gives an analytic solution in the form of series which converge very fastly. The analytical and numerical results reveal that the coupling of homotopy analysis technique with Sumudu transform algorithm is very easy to apply and highly accuratewhen apply to non-linear differential equation of fractional order.
Nonlinear Engineering – de Gruyter
Published: Jun 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.