Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

No solid solution compounds in between the binaries: syntheses and crystal structures of Nb(Br0.62(4)Cl0.38(4))2Cl2 and NbI2Cl2

No solid solution compounds in between the binaries: syntheses and crystal structures of... AbstractThe anion-mixed niobium tetrahalides Nb(Br0.62(4)Cl0.38(4))2Cl2 and NbI2Cl2 were obtained by heating NbBr5 with NbCl5 and NbI5 with NbCl5, respectively, in equimolar ratios with niobium metal in evacuated, torch-sealed silica ampoules at 720 K for 3 days. The orthorhombic title compounds form as very brittle black needles and were characterized by single-crystal X-ray diffraction [space group: Immm, Z=4; a=704.27(6), b=824.13(7), c=929.64(8) pm for Nb(Br0.62(4)Cl0.38(4))2Cl2 and a=753.76(6), b=829.38(7) and c=983.41(8) pm for NbI2Cl2]. Surprisingly enough, these mixed-anionic halides are not isostructural with either NbCl4, NbBr4 or NbI4, but crystallize isotypically with TaI2Cl2, thus being examples for differential site occupancy stabilized materials. Structural features of other niobium(IV) halides are compiled and compared to those of Nb(Br0.62(4)Cl0.38(4))2Cl2 and NbI2Cl2. Except for NbF4, they all exhibit chains of trans-edge connected [NbX6]2− octahedra, which allow Peierls distortions to form Nb–Nb single bonds. The packing of these chains differ, however, depending on the actual halide or mixed-halide combination. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zeitschrift für Naturforschung B de Gruyter

No solid solution compounds in between the binaries: syntheses and crystal structures of Nb(Br0.62(4)Cl0.38(4))2Cl2 and NbI2Cl2

Loading next page...
 
/lp/de-gruyter/no-solid-solution-compounds-in-between-the-binaries-syntheses-and-hKZ4IGxVOw

References (10)

Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0932-0776
eISSN
1865-7117
DOI
10.1515/znb-2017-0188
Publisher site
See Article on Publisher Site

Abstract

AbstractThe anion-mixed niobium tetrahalides Nb(Br0.62(4)Cl0.38(4))2Cl2 and NbI2Cl2 were obtained by heating NbBr5 with NbCl5 and NbI5 with NbCl5, respectively, in equimolar ratios with niobium metal in evacuated, torch-sealed silica ampoules at 720 K for 3 days. The orthorhombic title compounds form as very brittle black needles and were characterized by single-crystal X-ray diffraction [space group: Immm, Z=4; a=704.27(6), b=824.13(7), c=929.64(8) pm for Nb(Br0.62(4)Cl0.38(4))2Cl2 and a=753.76(6), b=829.38(7) and c=983.41(8) pm for NbI2Cl2]. Surprisingly enough, these mixed-anionic halides are not isostructural with either NbCl4, NbBr4 or NbI4, but crystallize isotypically with TaI2Cl2, thus being examples for differential site occupancy stabilized materials. Structural features of other niobium(IV) halides are compiled and compared to those of Nb(Br0.62(4)Cl0.38(4))2Cl2 and NbI2Cl2. Except for NbF4, they all exhibit chains of trans-edge connected [NbX6]2− octahedra, which allow Peierls distortions to form Nb–Nb single bonds. The packing of these chains differ, however, depending on the actual halide or mixed-halide combination.

Journal

Zeitschrift für Naturforschung Bde Gruyter

Published: Jan 26, 2018

There are no references for this article.