Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

New sodium-rich mixed Mn/In chalcogenido metallates Na12MnIn2Q10 (Q = S, Se)

New sodium-rich mixed Mn/In chalcogenido metallates Na12MnIn2Q10 (Q = S, Se) AbstractThe sodium-rich sulfido and selenido metallates Na12MnIn2Q10 (Q = S/Se) were synthesized in pure phase from melts composed of stoichiometric quantities of the manganese monochalcogenides MnQ, elemental indium and the chalcogens together with either Na2S (Q = S) or elemental sodium (Q = Se) as starting material. The samples were heated up to maximum temperatures of 1000/900 °C under an argon atmosphere; crystallization was achieved by slow cooling rates of 10 K h−1. The two isotypic compounds (monoclinic, space group P21/m, a = 678.26(2)/698.85(10), b = 2202.77(7)/2298.7(3), c = 766.39(3)/800.59(13) pm, β = 90.232(2)/90.147(5)°, Z = 2, R1 = 0.0516/0.0575) crystallize in a new structure type. According to the division of the formula as Na12[InQ4][MnInQ6] the salts contain ortho indate anions [InIIIQ4]5− besides hetero-bimetallic dimers [MnIIInIIIQ6]7−, which consist of two edge-sharing [MQ4] tetrahedra. The seven crystallographically different sodium cations exhibit an either tetrahedral or octahedral coordination by the chalcogen atoms. Thus, the overall structure of the salt is best described by a hexagonal close packing of the sulfide/selenide anions, in which the octahedral voids of every second interlayer section are fully occupied by the (overall 5/f.u.) Na+ positions with CN = 6. In the other half of the interlayer sheets, all tetrahedral voids (overall 10/f.u.) are occupied by the seven CN = 4 Na+ cations, one In3+ of the ortho anion and the two Mn2+/In3+ cations (which statistically occupy one crystallographic site). This structure relation is also verified by a Bärnighausen group-subgroup tree connecting the h.c.p. (Mg type) aristotype (with its tetrahedral and octahedral voids) by an overall index of 60 with the structure of the two title compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zeitschrift für Naturforschung B de Gruyter

New sodium-rich mixed Mn/In chalcogenido metallates Na12MnIn2Q10 (Q = S, Se)

Loading next page...
 
/lp/de-gruyter/new-sodium-rich-mixed-mn-in-chalcogenido-metallates-na12mnin2q10-q-s-WZuJK0WvOQ

References (27)

Publisher
de Gruyter
Copyright
© 2020 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0932-0776
eISSN
1865-7117
DOI
10.1515/znb-2020-0125
Publisher site
See Article on Publisher Site

Abstract

AbstractThe sodium-rich sulfido and selenido metallates Na12MnIn2Q10 (Q = S/Se) were synthesized in pure phase from melts composed of stoichiometric quantities of the manganese monochalcogenides MnQ, elemental indium and the chalcogens together with either Na2S (Q = S) or elemental sodium (Q = Se) as starting material. The samples were heated up to maximum temperatures of 1000/900 °C under an argon atmosphere; crystallization was achieved by slow cooling rates of 10 K h−1. The two isotypic compounds (monoclinic, space group P21/m, a = 678.26(2)/698.85(10), b = 2202.77(7)/2298.7(3), c = 766.39(3)/800.59(13) pm, β = 90.232(2)/90.147(5)°, Z = 2, R1 = 0.0516/0.0575) crystallize in a new structure type. According to the division of the formula as Na12[InQ4][MnInQ6] the salts contain ortho indate anions [InIIIQ4]5− besides hetero-bimetallic dimers [MnIIInIIIQ6]7−, which consist of two edge-sharing [MQ4] tetrahedra. The seven crystallographically different sodium cations exhibit an either tetrahedral or octahedral coordination by the chalcogen atoms. Thus, the overall structure of the salt is best described by a hexagonal close packing of the sulfide/selenide anions, in which the octahedral voids of every second interlayer section are fully occupied by the (overall 5/f.u.) Na+ positions with CN = 6. In the other half of the interlayer sheets, all tetrahedral voids (overall 10/f.u.) are occupied by the seven CN = 4 Na+ cations, one In3+ of the ortho anion and the two Mn2+/In3+ cations (which statistically occupy one crystallographic site). This structure relation is also verified by a Bärnighausen group-subgroup tree connecting the h.c.p. (Mg type) aristotype (with its tetrahedral and octahedral voids) by an overall index of 60 with the structure of the two title compounds.

Journal

Zeitschrift für Naturforschung Bde Gruyter

Published: Nov 26, 2020

There are no references for this article.