Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Private Information Retrieval (PIR), despite being well studied, is computationally costly and arduous to scale. We explore lower-cost relaxations of information-theoretic PIR, based on dummy queries, sparse vectors, and compositions with an anonymity system. We prove the security of each scheme using a flexible differentially private definition for private queries that can capture notions of imperfect privacy. We show that basic schemes are weak, but some of them can be made arbitrarily safe by composing them with large anonymity systems.
Proceedings on Privacy Enhancing Technologies – de Gruyter
Published: Oct 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.