Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Location-Based Social Network (LBSN) applications that support geo-location-based posting and queries to provide location-relevant information to mobile users are increasingly popular, but pose a location-privacy risk to posts. We investigated existing LBSNs and location privacy mechanisms, and found a powerful potential attack that can accurately locate users with relatively few queries, even when location data is well secured and location noise is applied. Our technique defeats previously proposed solutions including fake-location detection and query rate limits. To protect systems from this attack, we propose a simple, scalable, yet effective defense that quantizes the map into squares using hierarchical subdivision, consistently returns the same random result to multiple queries from the same square for posts from the same user, and responds to queries with different distance thresholds in a correlated manner, limiting the information gained by attackers, and ensuring that an attacker can never accurately know the quantized square containing a user. Finally, we verify the performance of our defense and analyze the trade-offs through comprehensive simulation in realistic settings. Surprisingly, our results show that in many environments, privacy level and user accuracy can be tuned using two independent parameters; in the remaining environments, a single parameter adjusts the tradeoff between privacy level and user accuracy. We also thoroughly explore the parameter space to provide guidance for actual deployments.
Proceedings on Privacy Enhancing Technologies – de Gruyter
Published: Oct 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.