Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract In this work, a novel numerical scheme based on method of lines (MOL) is proposed to solve the nonlinear time dependent Burgers’ equation. The Burgers’ equation is semi discretized in spatial direction by using MOL to yield system of nonlinear ordinary differential equations in time. The resulting system of nonlinear differential equations is integrated by an implicit finite difference method. We have not used Cole-Hopf transformation which gives less accurate solution for very small values of kinematic viscosity. Also, we have not considered nonlinear solvers that are computationally costlier and take more running time.In the proposed scheme nonlinearity is tackled by Taylor series and the use of fully discretized scheme is easy and practical. The proposed method is unconditionally stable in the linear sense. Furthermore, efficiency of the proposed scheme is demonstrated using three test problems.
Nonlinear Engineering – de Gruyter
Published: Dec 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.