Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Impact of operating temperature of gas transit pipeline on soil quality and production potential of crops

Impact of operating temperature of gas transit pipeline on soil quality and production potential... REFERENCESBAYRAMOV, E. – BUCHROITHNER, M.F. – McGURTY, E. 2013. Differences of MMF and USLE Models for Soil Loss Prediction along BTC and SCP Pipelines. In Journal of Pipeline Systems Engineering and Practise, vol. 4, no. 1, pp. 81–96. DOI: 10.1061/(ASCE)PS.1949-1204.000011710.1061/(ASCE)PS.1949-1204.0000117BLAŠKO, P. 2005. Vplyv tranzitného plynovodného systému na produkčný potenciál pôdy a úrody vybraných druhov plodín [The impact of the transit gas pipeline system on the production potential of the soil and selected crops]. PhD. Thesis. Nitra : Depon. at Slovak Agricultural Library of Slovak University of Agriculture Nitra, 79 pp.ČIMO, J. 2007. Klimatické zhodnotenie roku 2006 [Climate review of year 2006]. Provided by the Department of biometeorology and hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, 12 pp.DEMO, M. – BLAŠKO, P. – PRČÍK, M. – TORMA, S. – KOCO, Š. 2012. Tranzitný plynovodný systém v poľnohospodárskej krajine [Transit gas pipeline system in agricultural land]. Nitra : Gramond Nitra, 87 pp. ISBN 987-80-552-0878-7DEMO, M. – POLÁKOVÁ, Z. 2011. Vplyv tranzitného plynovodného systému na teplotu pôdy v závislosti od termínu zisťovania, vzdialenosti od plynovodného potrubia a vrstvy pôdy [Effects of transit pipeline system on soil temperature depending on term of data collection, distance from gas pipes and soil layer.] In Acta regionalia et environmentalica, vol. 8, no. 2, pp. 38–42.GEL’TSER, Y.G. – BOBROV, A.A. – GEL’TSER, V.Y. 1990. Some properties of soils on reforestation on lands near Moscow disrupted by gas pipeline construction. In Soviet-Soil-Science, vol. 22, no.1, pp. 74–80.GU, L. – POST, W.M. – KING, A.M. 2004. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis. In Global Biochemical Cycles, vol. 18, no. 1, pp. 1022–1032. DOI: 10.1029/2003GB00211910.1029/2003GB002119HALMOVÁ, D. 2009. Vplyv tranzitného plynovodu na vybrané vlastnosti a parametre pôdneho krytu [Impact of the transit gas pipeline on the selected properties and parameters of the soil cover]. PhD. Thesis. Nitra : Depon. at Slovak Agricultural Library of Slovak University of Agriculture Nitra, 128 pp.HALMOVÁ, D. – FEHÉR, A. 2014. Effect of transit gas pipeline temperature on the production potential of agricultural soils. In Journal of Central European Agriculture, vol. 15, no. 3, pp. 245–253. DOI: 10.5513/JCEA01/15.3.148110.5513/JCEA01/15.3.1481HOUŠKOVÁ, B. 1999. Metódy stanovenia ukazovateľov agrochemických vlastností pôdy [Methods for determining of the indicators of agrochemical soil properties]. In FIALA et al. Záväzné metódy rozborov pôd. Čiastkový monitorovací systém – Pôda. Bratislava : Soil Science and Conservation Research Institute, pp. 124–125. ISBN 80-85361-55-8KRAKAUER, N.Y. – COOK, B.I. – PUMA, M.J. 2010 Contribution of soil moisture feedback to hydroclimatic variability. In Hydrology and Earth System Sciences, vol. 14, no. 3, pp. 505–520. DOI: 10.5194/hess-14-505-201010.5194/hess-14-505-2010OLSON, E.R. – DOHERTY, J.M. 2011. The legacy of pipeline installation on the soil and vegetation of southeast Wisconsin wetlands. In Ecological Engineering, vol. 39, pp. 53–62. DOI: 10.1016/j.ecoleng.2011.11.005http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301012100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.ecoleng.2011.11.005PENUELAS, J. – PRIETO, P. – BEIER, C. – CESARACCIO, C. – ANGELIS, P – DATOS, G. – EMMETT, B.A. – ESTIARTE, M. – GARADNAI, J. – GORISSEN, A. – LÁNG, KOVÁCS, E. – KRÖEL-DULAY, G. – LLORENS, L. – PELLIZZARO, G. – RIIS-NIELSEN, T. – SCHMIDT, I.K. – SIRCA, C. – SOWERBY, A. – SPANO, D. – TIETEMA, A. 2007. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. In Global Changes Biology, vol. 13, no. 12, pp. 2563–2581. DOI: 10.1111/j.1365-2486.2007.01464.x10.1111/j.1365-2486.2007.01464.xRUSANOVA, G.V. 1997. Evolution of human-affected soils along a gas pipeline in the Northern Urals. In Eurasian Soil Science C/C of Pochvovedenie, vol. 30, no. 7, pp. 889–897.SZÉPLAKY, D. – VASZI, Z. – VARGA, A. 2013. Effect of temperature distribution around pipelines for transportation of natural gas on environment. In The Holistic Approach to Environment, vol. 3, no.1, pp. 33–40. http://www.cpo.hr/Paper%2035.pdf. ISSN 1848-0071SKALSKÝ, R. – HALAS, J. – MADARAS, M. 2002. Zistenie vplyvu prevádzkových potrubí tranzitnej sústavy SPP a. s. DSTG na pôdu a úrodnosť vybraných druhov poľnohospodárskych plodín [Determination of the impact of the transit pipelines SPP JSC DSTG on the soil and the yield of selected agricultural crops]. Bratislava : Depon. at Soil Science and Conservation Research Institute, 21 pp.SHI, P. – XIAO, J. – WANG, YF. – CHEN, LD. 2014. The effects of pipeline construction disturbance on soil properties and restoration cycle. In Environmental Monitoring and Assessment, vol. 186, no. 3, pp. 1825–1835. DOI: 10.1007/s10661-013-3496-510.1007/s10661-013-3496-5SHI, P. – HUANG, Y. – CHEN, C. – WANG. Y. – XIAO J. – CHEN, LD. 2015. How does pipeline construction affect land desertification? A case study in northwest China. In Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol. 77, no. 3, pp. 1993–2004. DOI: 10.1007/s11069-015-1688-810.1007/s11069-015-1688-8SPP a. s. 2004–2006. Priemerné mesačné teploty transportovaného plynu v roku 2004–2006, na vstupe a výstupe kompresorových staníc [Average monthly temperatures of transported gas in 2004–2006, at the inlet and outlet of compressor stations]. Nitra : Depon. at Slovak Gas Company JSC, 12 pp.SOON, Y.K. – ARSHAD, M.A. – RICE, W.A. – MILLS, P. 2000. Recovery of chemical and physical properties of boreal plain soils impacted by pipeline burial. In Canadian Journal of Soil Science, vol. 80, no. 3, pp. 489–497. DOI: 10.4141/S99-09710.4141/S99-097ŠIŠKA, B. – ČIMO, J. 2006. Klimatická charakteristika rokov 2004 a 2005 v Nitre [Climate characteristics of the years 2004–2005 in Nitra]. Nitra : Slovak University of Agriculture, 49 pp. ISBN 80-8069-761-2WALKER, P.J. – KOEN, T.B. 1995. Natural regeneration of ground storey vegetation in a semi-arid woodland following mechanical disturbance and burning. 1. Ground cover levels and composition. In Rangeland Journal, vol. 17, no. 1, pp. 46–58. DOI: 10.1071/RJ995004610.1071/RJ9950046WEN, X.F. – YUA, G.R. – SUN, X.M. – LI, Q.K. – LIU, Y.F. – ZHANG, L.M. – REN, CH.Y. – FU, Y.L. – LI, Z.Q. 2006. Soil moisture effect on temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. In Agricultural and Forrest Meteorology, vol. 137, no. 3–4, pp. 166–167. DOI: 10.1016/j.agrformet.2006.02.00510.1016/j.agrformet.2006.02.005YAKOVLEVA, N. 2011. Oil pipeline construction in Eastern Siberia: Implications for indigenous people. In Geoforum, vol. 42, no. 6 pp. 708–719. DOI: 10.1016/j.geoforum.2011.05.00510.1016/j.geoforum.2011.05.005XIAO, J. – WANG, YF. – SHI, P. – YANG, L. – CHEN, LD. 2014. Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions. In Environmental Monitoring and Assessment, vol. 186, no. 11, pp. 8037–8048. DOI: 10.1007/s10661-014-3986-010.1007/s10661-014-3986-0 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agriculture de Gruyter

Impact of operating temperature of gas transit pipeline on soil quality and production potential of crops

Loading next page...
 
/lp/de-gruyter/impact-of-operating-temperature-of-gas-transit-pipeline-on-soil-AqGtDVoFwh
Publisher
de Gruyter
Copyright
© 2017 Daniela Halmová et al., published by De Gruyter Open
ISSN
1338-4376
eISSN
1338-4376
DOI
10.1515/agri-2017-0012
Publisher site
See Article on Publisher Site

Abstract

REFERENCESBAYRAMOV, E. – BUCHROITHNER, M.F. – McGURTY, E. 2013. Differences of MMF and USLE Models for Soil Loss Prediction along BTC and SCP Pipelines. In Journal of Pipeline Systems Engineering and Practise, vol. 4, no. 1, pp. 81–96. DOI: 10.1061/(ASCE)PS.1949-1204.000011710.1061/(ASCE)PS.1949-1204.0000117BLAŠKO, P. 2005. Vplyv tranzitného plynovodného systému na produkčný potenciál pôdy a úrody vybraných druhov plodín [The impact of the transit gas pipeline system on the production potential of the soil and selected crops]. PhD. Thesis. Nitra : Depon. at Slovak Agricultural Library of Slovak University of Agriculture Nitra, 79 pp.ČIMO, J. 2007. Klimatické zhodnotenie roku 2006 [Climate review of year 2006]. Provided by the Department of biometeorology and hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, 12 pp.DEMO, M. – BLAŠKO, P. – PRČÍK, M. – TORMA, S. – KOCO, Š. 2012. Tranzitný plynovodný systém v poľnohospodárskej krajine [Transit gas pipeline system in agricultural land]. Nitra : Gramond Nitra, 87 pp. ISBN 987-80-552-0878-7DEMO, M. – POLÁKOVÁ, Z. 2011. Vplyv tranzitného plynovodného systému na teplotu pôdy v závislosti od termínu zisťovania, vzdialenosti od plynovodného potrubia a vrstvy pôdy [Effects of transit pipeline system on soil temperature depending on term of data collection, distance from gas pipes and soil layer.] In Acta regionalia et environmentalica, vol. 8, no. 2, pp. 38–42.GEL’TSER, Y.G. – BOBROV, A.A. – GEL’TSER, V.Y. 1990. Some properties of soils on reforestation on lands near Moscow disrupted by gas pipeline construction. In Soviet-Soil-Science, vol. 22, no.1, pp. 74–80.GU, L. – POST, W.M. – KING, A.M. 2004. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis. In Global Biochemical Cycles, vol. 18, no. 1, pp. 1022–1032. DOI: 10.1029/2003GB00211910.1029/2003GB002119HALMOVÁ, D. 2009. Vplyv tranzitného plynovodu na vybrané vlastnosti a parametre pôdneho krytu [Impact of the transit gas pipeline on the selected properties and parameters of the soil cover]. PhD. Thesis. Nitra : Depon. at Slovak Agricultural Library of Slovak University of Agriculture Nitra, 128 pp.HALMOVÁ, D. – FEHÉR, A. 2014. Effect of transit gas pipeline temperature on the production potential of agricultural soils. In Journal of Central European Agriculture, vol. 15, no. 3, pp. 245–253. DOI: 10.5513/JCEA01/15.3.148110.5513/JCEA01/15.3.1481HOUŠKOVÁ, B. 1999. Metódy stanovenia ukazovateľov agrochemických vlastností pôdy [Methods for determining of the indicators of agrochemical soil properties]. In FIALA et al. Záväzné metódy rozborov pôd. Čiastkový monitorovací systém – Pôda. Bratislava : Soil Science and Conservation Research Institute, pp. 124–125. ISBN 80-85361-55-8KRAKAUER, N.Y. – COOK, B.I. – PUMA, M.J. 2010 Contribution of soil moisture feedback to hydroclimatic variability. In Hydrology and Earth System Sciences, vol. 14, no. 3, pp. 505–520. DOI: 10.5194/hess-14-505-201010.5194/hess-14-505-2010OLSON, E.R. – DOHERTY, J.M. 2011. The legacy of pipeline installation on the soil and vegetation of southeast Wisconsin wetlands. In Ecological Engineering, vol. 39, pp. 53–62. DOI: 10.1016/j.ecoleng.2011.11.005http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301012100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.ecoleng.2011.11.005PENUELAS, J. – PRIETO, P. – BEIER, C. – CESARACCIO, C. – ANGELIS, P – DATOS, G. – EMMETT, B.A. – ESTIARTE, M. – GARADNAI, J. – GORISSEN, A. – LÁNG, KOVÁCS, E. – KRÖEL-DULAY, G. – LLORENS, L. – PELLIZZARO, G. – RIIS-NIELSEN, T. – SCHMIDT, I.K. – SIRCA, C. – SOWERBY, A. – SPANO, D. – TIETEMA, A. 2007. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. In Global Changes Biology, vol. 13, no. 12, pp. 2563–2581. DOI: 10.1111/j.1365-2486.2007.01464.x10.1111/j.1365-2486.2007.01464.xRUSANOVA, G.V. 1997. Evolution of human-affected soils along a gas pipeline in the Northern Urals. In Eurasian Soil Science C/C of Pochvovedenie, vol. 30, no. 7, pp. 889–897.SZÉPLAKY, D. – VASZI, Z. – VARGA, A. 2013. Effect of temperature distribution around pipelines for transportation of natural gas on environment. In The Holistic Approach to Environment, vol. 3, no.1, pp. 33–40. http://www.cpo.hr/Paper%2035.pdf. ISSN 1848-0071SKALSKÝ, R. – HALAS, J. – MADARAS, M. 2002. Zistenie vplyvu prevádzkových potrubí tranzitnej sústavy SPP a. s. DSTG na pôdu a úrodnosť vybraných druhov poľnohospodárskych plodín [Determination of the impact of the transit pipelines SPP JSC DSTG on the soil and the yield of selected agricultural crops]. Bratislava : Depon. at Soil Science and Conservation Research Institute, 21 pp.SHI, P. – XIAO, J. – WANG, YF. – CHEN, LD. 2014. The effects of pipeline construction disturbance on soil properties and restoration cycle. In Environmental Monitoring and Assessment, vol. 186, no. 3, pp. 1825–1835. DOI: 10.1007/s10661-013-3496-510.1007/s10661-013-3496-5SHI, P. – HUANG, Y. – CHEN, C. – WANG. Y. – XIAO J. – CHEN, LD. 2015. How does pipeline construction affect land desertification? A case study in northwest China. In Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol. 77, no. 3, pp. 1993–2004. DOI: 10.1007/s11069-015-1688-810.1007/s11069-015-1688-8SPP a. s. 2004–2006. Priemerné mesačné teploty transportovaného plynu v roku 2004–2006, na vstupe a výstupe kompresorových staníc [Average monthly temperatures of transported gas in 2004–2006, at the inlet and outlet of compressor stations]. Nitra : Depon. at Slovak Gas Company JSC, 12 pp.SOON, Y.K. – ARSHAD, M.A. – RICE, W.A. – MILLS, P. 2000. Recovery of chemical and physical properties of boreal plain soils impacted by pipeline burial. In Canadian Journal of Soil Science, vol. 80, no. 3, pp. 489–497. DOI: 10.4141/S99-09710.4141/S99-097ŠIŠKA, B. – ČIMO, J. 2006. Klimatická charakteristika rokov 2004 a 2005 v Nitre [Climate characteristics of the years 2004–2005 in Nitra]. Nitra : Slovak University of Agriculture, 49 pp. ISBN 80-8069-761-2WALKER, P.J. – KOEN, T.B. 1995. Natural regeneration of ground storey vegetation in a semi-arid woodland following mechanical disturbance and burning. 1. Ground cover levels and composition. In Rangeland Journal, vol. 17, no. 1, pp. 46–58. DOI: 10.1071/RJ995004610.1071/RJ9950046WEN, X.F. – YUA, G.R. – SUN, X.M. – LI, Q.K. – LIU, Y.F. – ZHANG, L.M. – REN, CH.Y. – FU, Y.L. – LI, Z.Q. 2006. Soil moisture effect on temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. In Agricultural and Forrest Meteorology, vol. 137, no. 3–4, pp. 166–167. DOI: 10.1016/j.agrformet.2006.02.00510.1016/j.agrformet.2006.02.005YAKOVLEVA, N. 2011. Oil pipeline construction in Eastern Siberia: Implications for indigenous people. In Geoforum, vol. 42, no. 6 pp. 708–719. DOI: 10.1016/j.geoforum.2011.05.00510.1016/j.geoforum.2011.05.005XIAO, J. – WANG, YF. – SHI, P. – YANG, L. – CHEN, LD. 2014. Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions. In Environmental Monitoring and Assessment, vol. 186, no. 11, pp. 8037–8048. DOI: 10.1007/s10661-014-3986-010.1007/s10661-014-3986-0

Journal

Agriculturede Gruyter

Published: Oct 1, 2017

There are no references for this article.