Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractModern search is heavily powered by knowledge bases, but users still query using keywords or natural language. As search becomes increasingly dependent on the integration of text and knowledge, novel approaches for a unified representation of combined data present the opportunity to unlock new ranking strategies. We have previously proposed the graph-of-entity as a purely graph-based representation and retrieval model, however this model would scale poorly. We tackle the scalability issue by adapting the model so that it can be represented as a hypergraph. This enables a significant reduction of the number of (hyper)edges, in regard to the number of nodes, while nearly capturing the same amount of information. Moreover, such a higher-order data structure, presents the ability to capture richer types of relations, including nary connections such as synonymy, or subsumption. We present the hypergraph-of-entity as the next step in the graph-of-entity model, where we explore a ranking approach based on biased random walks. We evaluate the approaches using a subset of the INEX 2009 Wikipedia Collection. While performance is still below the state of the art, we were, in part, able to achieve a MAP score similar to TF-IDF and greatly improve indexing efficiency over the graph-of-entity.
Open Computer Science – de Gruyter
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.