Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Videos of the human skin contain subtle color variations associated with the blood volume pulse. This remote photoplethysmography signal can be used for heart rate monitoring and represents an alternative to signals obtained from contact-based hardware. We developed an algorithm that estimates the heart rate in real-time from photoplethysmography signals and evaluate its performance in the context of ultra-high-field magnetic resonance imaging. We compare its accuracy to heart rate values estimated from electrocardiography and finger pulse oximetry triggers, obtained from MR vendor-provided hardware. For eight subjects, two experiments are conducted with the patient table outside and inside a 7 Tesla scanner. During both 5 min setups, heart rates from the algorithm and contact-based methods are stored. Their comparison suggests technical feasibility of the contactless method but that it is inferior in accuracy compared to contact-based hardware and that low heart rates (≤50 beats per minute) and adequate illumination are major challenges for practical feasibility.
Current Directions in Biomedical Engineering – de Gruyter
Published: Sep 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.