Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genetic Characterization of Tunisian Lime Genotypes Using Pomological Traits

Genetic Characterization of Tunisian Lime Genotypes Using Pomological Traits AbstractCitrus genus includes a wide number of species that have been long cultivated and well adapted in Tunisia. It is represented by small number of plantations and considered as underutilized in Tunisia. Our goal was to genetically characterize Tunisian lime genotypes to obtain data useful for gene conservation and breeding purposes. The survey of genotypes was conducted in the Cap Bon region, where citrus cultivation is the most spread. Sixteen quantitative and 19 qualitative parameters were evaluated. The observed accessions belonged to three different species: Citrus limetta, Citrus latifolia (limes Byrsa), and Citrus limettioides (limes of Palestine) according to Tanaka classification. Principal component analysis confirmed these classifications. Four-cell analysis (FCA) was used to determine the most threatened genotypes. Quantitative traits were evaluated and allowed the discrimination between genotypes. Many quantitative traits of fruit and juice were highly positively and significantly correlated. Phenotypic diversity was determined using Shannon–Wiener diversity index (H’). The highest value of diversity index was observed for both vesicle thickness and thickness of segment walls (H’ = 0.98). Intermediate values were observed for both fruit axis (H’= 0.49) and pulp firmness (H’ = 0.43). However, fruit shape (H’ = 0.24), shape of fruit apex (H’ = 0.24), and vesicle length (H’ = 0.33) presented the lowest values of diversity index. Current findings will be useful to conserve threatened genotypes ex situ and on farm and also will guide strategic conservation on Citrus genetic resources for future breeding programs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Horticultural Research de Gruyter

Genetic Characterization of Tunisian Lime Genotypes Using Pomological Traits

Loading next page...
 
/lp/de-gruyter/genetic-characterization-of-tunisian-lime-genotypes-using-pomological-ZPxkT2j7XZ
Publisher
de Gruyter
Copyright
© 2020 Olfa Saddoud Debbabi et al., published by Sciendo
eISSN
2300-5009
DOI
10.2478/johr-2020-0004
Publisher site
See Article on Publisher Site

Abstract

AbstractCitrus genus includes a wide number of species that have been long cultivated and well adapted in Tunisia. It is represented by small number of plantations and considered as underutilized in Tunisia. Our goal was to genetically characterize Tunisian lime genotypes to obtain data useful for gene conservation and breeding purposes. The survey of genotypes was conducted in the Cap Bon region, where citrus cultivation is the most spread. Sixteen quantitative and 19 qualitative parameters were evaluated. The observed accessions belonged to three different species: Citrus limetta, Citrus latifolia (limes Byrsa), and Citrus limettioides (limes of Palestine) according to Tanaka classification. Principal component analysis confirmed these classifications. Four-cell analysis (FCA) was used to determine the most threatened genotypes. Quantitative traits were evaluated and allowed the discrimination between genotypes. Many quantitative traits of fruit and juice were highly positively and significantly correlated. Phenotypic diversity was determined using Shannon–Wiener diversity index (H’). The highest value of diversity index was observed for both vesicle thickness and thickness of segment walls (H’ = 0.98). Intermediate values were observed for both fruit axis (H’= 0.49) and pulp firmness (H’ = 0.43). However, fruit shape (H’ = 0.24), shape of fruit apex (H’ = 0.24), and vesicle length (H’ = 0.33) presented the lowest values of diversity index. Current findings will be useful to conserve threatened genotypes ex situ and on farm and also will guide strategic conservation on Citrus genetic resources for future breeding programs.

Journal

Journal of Horticultural Researchde Gruyter

Published: Jun 1, 2020

There are no references for this article.