Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genetic Algorithm Embedded into a Quality-Oriented Workflow of Methods for the Development of a Linear Drive used in Intralogistic Systems

Genetic Algorithm Embedded into a Quality-Oriented Workflow of Methods for the Development of a... Abstract This paper presents the results of the DFG-project (Deutsche Forschungsgemeinschaft) Q-ELF (“Qualitätsorientierter Methodenworkflow für die Produktneuentwicklung eines Linearantriebs in der Fördertechnik”) carried out in cooperation of the TU Dortmund University (support code KU 1307/12-1) with the BUW Wuppertal (support code WI 1234-11/1). The project continues the former project SFB 696 (Sonderforschungsbereich) regarding the Demand Compliant Design (DeCoDe) and the corresponding system model that strengthens the knowledge management to create high-quality mechatronical systems. In contrast to the SFB, which comprised the reverse engineering of a belt conveyor, Q-ELF applied a workflow of methods for quality oriented development on a new product. The DeCoDe ensures a methodical development that connects different engineering domains. This connection is important because the most problems and malfunctions arise at the interface of different domains due to their different notations for example. This approach also enables a methodical comparison of different competing concepts to pick the best suited one. A genetic algorithm is presented to further decrease the design-space. The project was carried out to develop linear drives for intralogistic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Electrical Engineering de Gruyter

Genetic Algorithm Embedded into a Quality-Oriented Workflow of Methods for the Development of a Linear Drive used in Intralogistic Systems

Loading next page...
 
/lp/de-gruyter/genetic-algorithm-embedded-into-a-quality-oriented-workflow-of-methods-Tbo7KLZRjE

References (12)

Publisher
de Gruyter
Copyright
Copyright © 2014 by the
ISSN
2300-2506
eISSN
2300-2506
DOI
10.2478/aee-2014-0045
Publisher site
See Article on Publisher Site

Abstract

Abstract This paper presents the results of the DFG-project (Deutsche Forschungsgemeinschaft) Q-ELF (“Qualitätsorientierter Methodenworkflow für die Produktneuentwicklung eines Linearantriebs in der Fördertechnik”) carried out in cooperation of the TU Dortmund University (support code KU 1307/12-1) with the BUW Wuppertal (support code WI 1234-11/1). The project continues the former project SFB 696 (Sonderforschungsbereich) regarding the Demand Compliant Design (DeCoDe) and the corresponding system model that strengthens the knowledge management to create high-quality mechatronical systems. In contrast to the SFB, which comprised the reverse engineering of a belt conveyor, Q-ELF applied a workflow of methods for quality oriented development on a new product. The DeCoDe ensures a methodical development that connects different engineering domains. This connection is important because the most problems and malfunctions arise at the interface of different domains due to their different notations for example. This approach also enables a methodical comparison of different competing concepts to pick the best suited one. A genetic algorithm is presented to further decrease the design-space. The project was carried out to develop linear drives for intralogistic systems.

Journal

Archives of Electrical Engineeringde Gruyter

Published: Dec 11, 2014

There are no references for this article.