Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Existence of positive solutions for nonlocal p ...

Existence of positive solutions for nonlocal p ... AbstractIn this article, we discuss the existence of positive solutions by using sub-super solutions concepts of the following p⁢(x){p(x)}-Kirchhoff system:{-M⁢(I0⁢(u))⁢△p⁢(x)⁢u=λp⁢(x)⁢[λ1⁢f⁢(v)+μ1⁢h⁢(u)]in ⁢Ω,-M⁢(I0⁢(v))⁢△p⁢(x)⁢v=λp⁢(x)⁢[λ2⁢g⁢(u)+μ2⁢τ⁢(v)]in ⁢Ω,u=v=0on ⁢∂⁡Ω,\left\{\begin{aligned} &\displaystyle{-}M(I_{0}(u))\triangle_{p(x)}u=\lambda^{%p(x)}[\lambda_{1}f(v)+\mu_{1}h(u)]&&\displaystyle\text{in }\Omega,\\&\displaystyle{-}M(I_{0}(v))\triangle_{p(x)}v=\lambda^{p(x)}[\lambda_{2}g(u)+%\mu_{2}\tau(v)]&&\displaystyle\text{in }\Omega,\\&\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right.where Ω⊂ℝN{\Omega\subset\mathbb{R}^{N}}is a bounded smooth domain with C2{C^{2}}boundary ∂⁡Ω{\partial\Omega}, △p⁢(x)⁢u=div⁡(|∇⁡u|p⁢(x)-2⁢∇⁡u){\triangle_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)}, p⁢(x)∈C1⁢(Ω¯){p(x)\in C^{1}(\overline{\Omega})}, with 1<p⁢(x){1<p(x)}, is a function satisfying 1<p-=infΩ⁡p⁢(x)≤p+=supΩ⁡p⁢(x)<∞{1<p^{-}=\inf_{\Omega}p(x)\leq p^{+}=\sup_{\Omega}p(x)<\infty}, λ, λ1{\lambda_{1}}, λ2{\lambda_{2}}, μ1{\mu_{1}}and μ2{\mu_{2}}are positive parameters, I0⁢(u)=∫Ω1p⁢(x)⁢|∇⁡u|p⁢(x)⁢𝑑x{I_{0}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx}, and M⁢(t){M(t)}is a continuous function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Pure and Applied Mathematics de Gruyter

Existence of positive solutions for nonlocal p ...

Loading next page...
 
/lp/de-gruyter/existence-of-positive-solutions-for-nonlocal-p-x-p-x-kirchhoff-khfAgpP00t

References (28)

Publisher
de Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1869-6090
eISSN
1869-6090
DOI
10.1515/apam-2017-0073
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this article, we discuss the existence of positive solutions by using sub-super solutions concepts of the following p⁢(x){p(x)}-Kirchhoff system:{-M⁢(I0⁢(u))⁢△p⁢(x)⁢u=λp⁢(x)⁢[λ1⁢f⁢(v)+μ1⁢h⁢(u)]in ⁢Ω,-M⁢(I0⁢(v))⁢△p⁢(x)⁢v=λp⁢(x)⁢[λ2⁢g⁢(u)+μ2⁢τ⁢(v)]in ⁢Ω,u=v=0on ⁢∂⁡Ω,\left\{\begin{aligned} &\displaystyle{-}M(I_{0}(u))\triangle_{p(x)}u=\lambda^{%p(x)}[\lambda_{1}f(v)+\mu_{1}h(u)]&&\displaystyle\text{in }\Omega,\\&\displaystyle{-}M(I_{0}(v))\triangle_{p(x)}v=\lambda^{p(x)}[\lambda_{2}g(u)+%\mu_{2}\tau(v)]&&\displaystyle\text{in }\Omega,\\&\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right.where Ω⊂ℝN{\Omega\subset\mathbb{R}^{N}}is a bounded smooth domain with C2{C^{2}}boundary ∂⁡Ω{\partial\Omega}, △p⁢(x)⁢u=div⁡(|∇⁡u|p⁢(x)-2⁢∇⁡u){\triangle_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)}, p⁢(x)∈C1⁢(Ω¯){p(x)\in C^{1}(\overline{\Omega})}, with 1<p⁢(x){1<p(x)}, is a function satisfying 1<p-=infΩ⁡p⁢(x)≤p+=supΩ⁡p⁢(x)<∞{1<p^{-}=\inf_{\Omega}p(x)\leq p^{+}=\sup_{\Omega}p(x)<\infty}, λ, λ1{\lambda_{1}}, λ2{\lambda_{2}}, μ1{\mu_{1}}and μ2{\mu_{2}}are positive parameters, I0⁢(u)=∫Ω1p⁢(x)⁢|∇⁡u|p⁢(x)⁢𝑑x{I_{0}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx}, and M⁢(t){M(t)}is a continuous function.

Journal

Advances in Pure and Applied Mathematicsde Gruyter

Published: Jan 1, 2019

There are no references for this article.