Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract Evaluation of CT capability for the detection of thin bone structures by means of modeling small bone structures and comparing with quantitative measurements. Knowledge of how thin bone structures can be or of what low density to be detectable in clinical CT images can increase the diagnostic competence to diagnose various diseases. Correlation between size and density of detectable bone structures is the key for many diagnosis purposes. This paper describes the use of clinical 64 detector scanner to image the skeletons of codfish and salmon species. Fish skeletons, such as codfish and salmon, have petite structures and lower bone density than humans. Bone structures were segmented out of the image data and 3D models of their skeletons developed. Evaluation was done by means of comparing quantitative measurements of selected bones to parameters observed from the model. Results show the limits where thin bones and of low density disappear from the clinical CT. It shows ability to reconstruct closely the diameter of the codfish bones but to a less extent the small bones of the salmon.
Current Directions in Biomedical Engineering – de Gruyter
Published: Sep 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.