Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract This paper analyzes the performance of multiple steps estimators of vector autoregressive multivariate conditional correlation GARCH models by means of Monte Carlo experiments. We show that if innovations are Gaussian, estimating the parameters in multiple steps is a reasonable alternative to the maximization of the full likelihood function. Our results also suggest that for the sample sizes usually encountered in financial econometrics, the differences between the volatility and correlation estimates obtained with the more efficient estimator and the multiple steps estimators are negligible. However, when innovations are distributed as a Student-t, using multiple steps estimators might not be a good idea.
Studies in Nonlinear Dynamics & Econometrics – de Gruyter
Published: May 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.