Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractIn this study the low visibility in Nanjing city is classified and predicted using observed data during 2014 to 2016 with machine-learning based decision tree algorithm (4.5). For this purpose, the model was trained with 3/4th of the data samples until the self-learning accuracy of the model reached 88.32%. The remaining 1/4th of the data samples were used to verify the model’s prediction ability, with the test accuracy reaching 88.34% indicating a good classification diagnosis effect of the model. The results produced with model, generated through learning from the training sample, it is found that the relative humidity, PM10 and PM2.5 are important factors in diagnosing “whether low visibility events will occur in Nanjing”: When relative humidity is favorable (i.e. <90%) and PM2.5 concentration is not high enough (i.e. <146), the probability of low visibility events may reduce; when relative humidity is relatively favorable (i.e. ≥ 90%) with a PM10 concentration ≥ 59, low visibility events are more likely to occur; when relative humidity is extremely favorable (i.e. ≥ 96%) with a low PM10 concentration (i.e. <59), there is also a high probability that low visibility events will occur.
Open Physics – de Gruyter
Published: Mar 25, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.