Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Cobalt Catalysts Preparation and Characterization over Alumina Support for Fischer Tropsch Synthesis

Cobalt Catalysts Preparation and Characterization over Alumina Support for Fischer Tropsch Synthesis AbstractAn investigation was done to develop and characterize the alumina supported cobalt catalyst for Fischer-Tropsch Synthesis to produce biodiesel from biomass with the aim to produce alumina-supported cobalt catalysts containing 7 to 19 wt.% cobalt content. By using incipient wetness impregnation of γ-Al2O3 supports with cobalt nitrate hexahydrate with ethanol and distilled water solutions; the 14 wt.% cobalt content in catalyst was achieved. Nitrogen adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), H2temperature programmed reduction (H2-TPR), temperature programmed desorption (TPD), temperature programmed oxidation (TPO) and carbon monoxide chemisorption were used for the characterization of the catalysts to attain an appropriate cobalt catalyst. In order to investigate the effect of the impregnation on the crystalline size, surface area and cobalt content, three different impregnation methods with various durations were investigated. In addition, increasing the impregnation duration increased the cobalt content and its dispersion. Based on results, positive effect of the alumina support and impregnation duration on the crystallite size, surface area, and pore diameter, reducibility of the catalyst and cobalt dispersion were investigated. Thus, cobalt catalyst for using in fixed bed reactor to produce biodiesel from biomass through Fischer-Tropsch Synthesis was prepared and characterized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biofuels Engineering de Gruyter

Cobalt Catalysts Preparation and Characterization over Alumina Support for Fischer Tropsch Synthesis

Loading next page...
 
/lp/de-gruyter/cobalt-catalysts-preparation-and-characterization-over-alumina-support-G4pZ5CGIsm
Publisher
de Gruyter
Copyright
© 2018
ISSN
2084-7181
eISSN
2084-7181
DOI
10.1515/bfuel-2017-0004
Publisher site
See Article on Publisher Site

Abstract

AbstractAn investigation was done to develop and characterize the alumina supported cobalt catalyst for Fischer-Tropsch Synthesis to produce biodiesel from biomass with the aim to produce alumina-supported cobalt catalysts containing 7 to 19 wt.% cobalt content. By using incipient wetness impregnation of γ-Al2O3 supports with cobalt nitrate hexahydrate with ethanol and distilled water solutions; the 14 wt.% cobalt content in catalyst was achieved. Nitrogen adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), H2temperature programmed reduction (H2-TPR), temperature programmed desorption (TPD), temperature programmed oxidation (TPO) and carbon monoxide chemisorption were used for the characterization of the catalysts to attain an appropriate cobalt catalyst. In order to investigate the effect of the impregnation on the crystalline size, surface area and cobalt content, three different impregnation methods with various durations were investigated. In addition, increasing the impregnation duration increased the cobalt content and its dispersion. Based on results, positive effect of the alumina support and impregnation duration on the crystallite size, surface area, and pore diameter, reducibility of the catalyst and cobalt dispersion were investigated. Thus, cobalt catalyst for using in fixed bed reactor to produce biodiesel from biomass through Fischer-Tropsch Synthesis was prepared and characterized.

Journal

Biofuels Engineeringde Gruyter

Published: Dec 29, 2017

References