Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Classical (Heisenberg) simulations show that the total magnetization of the lowest-energy states of clusters made of antiferromagnetically coupled chromium atoms is planar, rather than collinear, depending on the arrangement of the atoms. Although the model Hamiltonian is not restrictive, many cluster configurations of various numbers of atoms do not use all three directions for the spins. This result confirms the conclusion drawn from the local-spin DFT calculation by Kohl and Bertsch that clusters of N≤13 have non-collinear magnetic moments. The present simulations show non-collinear spin ordering also for bigger clusters, designed to be as spherical as possible following the bcc arrangement, when atoms interact both with the nearest and next-nearest neighbours. Depending on the signs of the coupling constants frustration appears. The advantage of the discrete model, despite the simplicity, is that very large clusters and magnetization at finite temperatures can be studied. This model predicts that clusters with specific numbers of atoms interacting only with the nearest neighbours have collinear spins as in the bulk. We also apply the model to simulate the destruction of the anti-ferromagnetic ordering by thermal fluctuations. This model shows no unique magnetization of mixed Fe 0.33 Cr 0.67, which is consistent with experimental observations.
Open Physics – de Gruyter
Published: Jun 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.