Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractPetroleum and hydrocarbons contamination can be remediated by physical, chemical or biological methods. Among these, in situ bioremediation is considered to be environmentally friendly because it restores the soil structure, requires less energy input and involves the notable removal after degradation of biosurfactant. The present study involves the characterization and assessment of biosurfactant producing indigenous hydrocarbonoclastic bacteria and their potential application in bioremediation processes. Three bacterial strains were isolated from various crude oil contaminated environments and characterized using standard identification techniques. The results clearly demonstrate the capability of utilizing hydrocarbon and biosurfactant produced by the bacterial strains. 16S rDNA sequencing followed by BLAST analysis revealed their similarity to Pseudomonas aeruginosa. The physico-chemical characterization of the biosurfactants revealed significant surface properties with stability at extreme temperature conditions (up to 121˚C), pH (5 - 8) and salinity (up to 4 %). Further, the mass spectrometry confirmed predominance of di-rhamnolipids in biosurfactant mixtures. The biosurfactants were found to be efficient in the removal of crude oil from the contaminated sand suggesting its applicability in bioremediation technology. Further, improved discharge of crude oil at elevated temperatures also confirms their thermo-stability which, could be exploited in microbial enhanced oil recovery processes. Thus, the applications of biosurfactants produced by the indigenous hydrocarbonoclastic strains appeared to be advantageous for bioremediation of petroleum-contaminated environments.
Nova Biotechnologica et Chimica – de Gruyter
Published: Dec 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.