Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Canopy structure and topography effects on snow distribution at a catchment scale: Application of multivariate approaches

Canopy structure and topography effects on snow distribution at a catchment scale: Application of... ReferencesBlahušiaková, A., Matoušková, M., 2015. Rainfall and runoff regime trends in mountain catchments (Case study area: the upper Hron River basin, Slovakia). J. Hydrol. Hydromech., 63, 183-192. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000356812200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Boon, S., 2012. Snow accumulation following forest disturbance. Ecohydrology, 5, 279-285.10.1002/eco.212http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304901800006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Burles, K., Boon, S., 2011. Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada. Hydrol. Process., 25, 3012-3029.De Michele, C., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P., Ghezzi, A., Gianatti, R., Della Vedova, G., 2016. Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation. Cryosph., 10, 511-522.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000379411800003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Duchacek, L., 2014. Vertical variability in the position of the zero isochion in geomorphologic regions of Czechia. Geografie, 119, 145-160.Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson, D., Barr, A., Bartlett, P., Elder, K., 2009. SNOWMIP2: An Evaluation of Forest Snow Process Simulations. Bull. Am. Meteorol. Soc., 90, 1120-1135.10.1175/2009BAMS2629.1Essery, R., Morin, S., Lejeune, Y., B Ménard, C., 2013. A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131-148.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318605000013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Fischer, B.M.C., Rinderer, M., Schneider, P., Ewen, T., Seibert, J., 2015. Contributing sources to baseflow in pre-alpine headwaters using spatial snapshot sampling. Hydrol. Process., 29, 5321-5336.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368278100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Frazer, G.W., Canham, C.D., Lertzman, K.P., 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby.Garvelmann, J., Pohl, S., Weiler, M., 2013. From observation to the quantification of snow processes with a time-lapse camera network. Hydrol. Earth Syst. Sci., 17, 1415-1429.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318440800012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.5194/hess-17-1415-2013Grünewald, T., Stötter, J., Pomeroy, J.W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., Lehning, M., 2013. Statistical modelling of the snow depth distribution in open alpine terrain. Hydrol. Earth Syst. Sci., 17, 3005-3021.10.5194/hess-17-3005-2013He, Z.H., Parajka, J., Tian, F.Q., Blöschl, G., 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci., 18, 4773-4789.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345769100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.5194/hess-18-4773-2014Hock, R., 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282, 104-115.Holko, L., Škvarenina, J., Kostka, Z., Frič, M., Staroň, J., 2009. Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64, 594-599.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000265939800038&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Jenicek, M., Beitlerova, H., Hasa, M., Kucerova, D., Pevna, H., Podzimek, S., 2012. Modeling snow accumulation and snowmelt runoff - present approaches and results. Acta Universitatis Carolinae Geographica, 47, 15-24.Jenicek, M., Pevna, H., Matejka, O., 2015. Snow accumulation and ablation in three forested mountain catchments. Acta Hydrol. Slovaca, 16, 208-216.Jenicek, M., Hotovy, O., Matejka, O., 2017. Snow accumulation and ablation in different canopy structures at a plot scale: using degree-day approach and measured shortwave radiation. Acta Universitatis Carolinae Geographica, 52, 1, 51-62.Jost, G., Weiler, M., Gluns, D.R., Alila, Y., 2007. The influence of forest and topography on snow accumulation and melt at the watershed-scale. J. Hydrol., 347, 101-115.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000251467700009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Jost, G., Dan Moore, R., Smith, R., Gluns, D.R., 2012. Distributed temperature-index snowmelt modelling for forested catchments. J. Hydrol., 420, 87-101.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301082000008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Kliment, Z., Matouskova, M., Ledvinka, O., Kralovec, V., 2011. Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic. J. Hydrol. Hydromech., 59, 36-50.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000288822700003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Krajčí, P., Holko, L., Parajka, J., 2016. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001-2014. J. Hydrol. Hydromech., 64, 12-22.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000372319200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Kucerova, D., Jenicek, M., 2014. Comparison of selected methods used for the calculation of the snowpack spatial distribution, Bystřice River basin, Czechia. Geografie, 119, 199-217.Kutlakova, L., Jenicek, M., 2012. Modelling snow accumulation and snowmelt in the Bystrice River basin. Geografie, 117, 110-125.Langhammer, J., Hartvich, F., Kliment, Z., Jeníček, M., Bernsteinová, J., Vlček, L., Su, Y., Štych, P., Miřijovský, J., 2015a. The impact of disturbance on the dynamics of fluvial processes in mountain landscapes. Silva Gabreta, 21, 105-116.Langhammer, J., Su, Y., Bernsteinová, J., 2015b. Runoff response to climate warming and forest disturbance in a midmountain basin. Water, 7, 3320-3342.Lendzioch, T., Langhammer, J., Jenicek, M., 2016. Tracking forest and open area effects on snow accumulation by unmanned aerial vehicle photogrammetry. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 917-923. DOI: 10.5194/isprs-archives-XLI-B1-917-2016. 10.5194/isprs--XLI-B1-917-2016López-Moreno, J.I., Latron, J., 2008. Influence of canopy density on snow distribution in a temperate mountain range. Hydrol. Process., 22, 117-126.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000252544800010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3López-Moreno, J.I., Revuelto, J., Fassnacht, S.R., Azorín- Molina, C., Vicente-Serrano, S.M., Morán-Tejeda, E., Sexstone, G.A., 2015. Snowpack variability across various spatio-temporal resolutions. Hydrol. Process., 29, 1213-1224.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000350548100031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Lundquist, J.D., Dickerson-Lange, S.E., Lutz, J.A., Cristea, N.C., 2013. Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resour. Res., 49, 6356-6370.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000327432500016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Matejka, O., Jenicek, M., 2015. An energy-based model accounting for snow accumulation and snowmelt in a coniferous forest and in an open area. In: Voda a Krajina 2015, 1-14.Molotch, N.P., Meromy, L., 2014. Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrol. Process., 28, 4573-4586.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339717800004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Musselman, K.N., Pomeroy, J.W., Link, T.E., 2015. Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agric. For. Meteorol., 207, 69-82.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000355364200007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Parajka, J., Holko, L., Kostka, Z., Blöschl, G., 2012. MODIS snow cover mapping accuracy in a small mountain catchment - comparison between open and forest sites. Hydrol. Earth Syst. Sci., 16, 2365-2377.10.5194/hess-16-2365-2012http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000306976200035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Pohl, S., Marsh, P., Liston, G.E., 2006. Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct. Antarct. Alp. Res., 38, 136-146.10.1657/1523-0430(2006)038[0136:SVITFD]2.0.CO;2Pomeroy, J., Fang, X., Ellis, C., 2012. Sensitivity of snowmelt hydrology in Marmot Creek, Alberta, to forest cover disturbance. Hydrol. Process., 26, 1891-1904. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304909700013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Pugh, E.T., Small, E.E., 2013. The impact of beetle-induced conifer death on stand-scale canopy snow interception. Hydrol. Res., 44, 644-657.R Core Team, 2016. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/ (accessed 8.1.16).Revuelto, J., López-Moreno, J.-I., Azorin-Molina, C., Alonso-González, E., Sanmiguel-Vallelado, A., 2016. Small-scale effect of pine stand pruning on snowpack distribution in the Pyrenees observed with a terrestrial laser scanner. Forests, 7, 166.Seibert, J., Jenicek, M., Huss, M., Ewen, T., 2014. Snow and ice in the hydrosphere. In: Haeberli, W., Whiteman, C. (Eds.): Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier, Amsterdam, pp. 99-137.Schelker, J., Kuglerová, L., Eklöf, K., Bishop, K., Laudon, H., 2013. Hydrological effects of clear-cutting in a boreal forest - Snowpack dynamics, snowmelt and streamflow responses. J. Hydrol., 484, 105-114.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317453200011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Schnorbus, M., Alila, Y., 2013. Peak flow regime changesfollowing forest harvesting in a snow-dominated basin: Effects of harvest area, elevation, and channel connectivity. Water Resour. Res., 49, 517-535.Stähli, M., Gustafsson, D., 2006. Long-term investigations of the snow cover in a subalpine semi-forested catchment. Hydrol. Process., 20, 411-428.Stähli, M., Jonas, T., Gustafsson, D., 2009. The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrol. Process., 23, 2498-2512.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000269103200009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Strasser, U., Warscher, M., Liston, G.E., 2011. Modeling snow-canopy processes on an idealized mountain. J. Hydrometeorol., 12, 663-677.10.1175/2011JHM1344.1http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000294047300010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Šípek, V., Tesař, M., 2014. Seasonal snow accumulation in the mid-latitude forested catchment. Biologia, 69, 1562-1569.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000346177900013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Vlcek, L., Kocum, J., Jansky, B., Sefrna, L., Kucerova, A., 2012. Retention potential and hydrological balance of a peat bog: case study of Rokytka Moors, Otava River headwaters, sw. Czechia. Geografie, 117, 395-414.Winkler, R., Spittlehouse, D., Boon, S., Zimonick, B., 2015. Forest disturbance effects on snow and water yield in interior British Columbia. Hydrol. Res., 46, 521-532.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000358297000005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology and Hydromechanics de Gruyter

Canopy structure and topography effects on snow distribution at a catchment scale: Application of multivariate approaches

Loading next page...
 
/lp/de-gruyter/canopy-structure-and-topography-effects-on-snow-distribution-at-a-yiXlFM2F7E
Publisher
de Gruyter
Copyright
© 2017
ISSN
0042-790X
eISSN
0042-790X
DOI
10.1515/johh-2017-0027
Publisher site
See Article on Publisher Site

Abstract

ReferencesBlahušiaková, A., Matoušková, M., 2015. Rainfall and runoff regime trends in mountain catchments (Case study area: the upper Hron River basin, Slovakia). J. Hydrol. Hydromech., 63, 183-192. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000356812200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Boon, S., 2012. Snow accumulation following forest disturbance. Ecohydrology, 5, 279-285.10.1002/eco.212http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304901800006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Burles, K., Boon, S., 2011. Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada. Hydrol. Process., 25, 3012-3029.De Michele, C., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P., Ghezzi, A., Gianatti, R., Della Vedova, G., 2016. Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation. Cryosph., 10, 511-522.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000379411800003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Duchacek, L., 2014. Vertical variability in the position of the zero isochion in geomorphologic regions of Czechia. Geografie, 119, 145-160.Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson, D., Barr, A., Bartlett, P., Elder, K., 2009. SNOWMIP2: An Evaluation of Forest Snow Process Simulations. Bull. Am. Meteorol. Soc., 90, 1120-1135.10.1175/2009BAMS2629.1Essery, R., Morin, S., Lejeune, Y., B Ménard, C., 2013. A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131-148.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318605000013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Fischer, B.M.C., Rinderer, M., Schneider, P., Ewen, T., Seibert, J., 2015. Contributing sources to baseflow in pre-alpine headwaters using spatial snapshot sampling. Hydrol. Process., 29, 5321-5336.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368278100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Frazer, G.W., Canham, C.D., Lertzman, K.P., 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby.Garvelmann, J., Pohl, S., Weiler, M., 2013. From observation to the quantification of snow processes with a time-lapse camera network. Hydrol. Earth Syst. Sci., 17, 1415-1429.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318440800012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.5194/hess-17-1415-2013Grünewald, T., Stötter, J., Pomeroy, J.W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., Lehning, M., 2013. Statistical modelling of the snow depth distribution in open alpine terrain. Hydrol. Earth Syst. Sci., 17, 3005-3021.10.5194/hess-17-3005-2013He, Z.H., Parajka, J., Tian, F.Q., Blöschl, G., 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci., 18, 4773-4789.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345769100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.5194/hess-18-4773-2014Hock, R., 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282, 104-115.Holko, L., Škvarenina, J., Kostka, Z., Frič, M., Staroň, J., 2009. Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64, 594-599.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000265939800038&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Jenicek, M., Beitlerova, H., Hasa, M., Kucerova, D., Pevna, H., Podzimek, S., 2012. Modeling snow accumulation and snowmelt runoff - present approaches and results. Acta Universitatis Carolinae Geographica, 47, 15-24.Jenicek, M., Pevna, H., Matejka, O., 2015. Snow accumulation and ablation in three forested mountain catchments. Acta Hydrol. Slovaca, 16, 208-216.Jenicek, M., Hotovy, O., Matejka, O., 2017. Snow accumulation and ablation in different canopy structures at a plot scale: using degree-day approach and measured shortwave radiation. Acta Universitatis Carolinae Geographica, 52, 1, 51-62.Jost, G., Weiler, M., Gluns, D.R., Alila, Y., 2007. The influence of forest and topography on snow accumulation and melt at the watershed-scale. J. Hydrol., 347, 101-115.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000251467700009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Jost, G., Dan Moore, R., Smith, R., Gluns, D.R., 2012. Distributed temperature-index snowmelt modelling for forested catchments. J. Hydrol., 420, 87-101.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301082000008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Kliment, Z., Matouskova, M., Ledvinka, O., Kralovec, V., 2011. Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic. J. Hydrol. Hydromech., 59, 36-50.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000288822700003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Krajčí, P., Holko, L., Parajka, J., 2016. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001-2014. J. Hydrol. Hydromech., 64, 12-22.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000372319200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Kucerova, D., Jenicek, M., 2014. Comparison of selected methods used for the calculation of the snowpack spatial distribution, Bystřice River basin, Czechia. Geografie, 119, 199-217.Kutlakova, L., Jenicek, M., 2012. Modelling snow accumulation and snowmelt in the Bystrice River basin. Geografie, 117, 110-125.Langhammer, J., Hartvich, F., Kliment, Z., Jeníček, M., Bernsteinová, J., Vlček, L., Su, Y., Štych, P., Miřijovský, J., 2015a. The impact of disturbance on the dynamics of fluvial processes in mountain landscapes. Silva Gabreta, 21, 105-116.Langhammer, J., Su, Y., Bernsteinová, J., 2015b. Runoff response to climate warming and forest disturbance in a midmountain basin. Water, 7, 3320-3342.Lendzioch, T., Langhammer, J., Jenicek, M., 2016. Tracking forest and open area effects on snow accumulation by unmanned aerial vehicle photogrammetry. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 917-923. DOI: 10.5194/isprs-archives-XLI-B1-917-2016. 10.5194/isprs--XLI-B1-917-2016López-Moreno, J.I., Latron, J., 2008. Influence of canopy density on snow distribution in a temperate mountain range. Hydrol. Process., 22, 117-126.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000252544800010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3López-Moreno, J.I., Revuelto, J., Fassnacht, S.R., Azorín- Molina, C., Vicente-Serrano, S.M., Morán-Tejeda, E., Sexstone, G.A., 2015. Snowpack variability across various spatio-temporal resolutions. Hydrol. Process., 29, 1213-1224.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000350548100031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Lundquist, J.D., Dickerson-Lange, S.E., Lutz, J.A., Cristea, N.C., 2013. Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resour. Res., 49, 6356-6370.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000327432500016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Matejka, O., Jenicek, M., 2015. An energy-based model accounting for snow accumulation and snowmelt in a coniferous forest and in an open area. In: Voda a Krajina 2015, 1-14.Molotch, N.P., Meromy, L., 2014. Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrol. Process., 28, 4573-4586.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339717800004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Musselman, K.N., Pomeroy, J.W., Link, T.E., 2015. Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agric. For. Meteorol., 207, 69-82.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000355364200007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Parajka, J., Holko, L., Kostka, Z., Blöschl, G., 2012. MODIS snow cover mapping accuracy in a small mountain catchment - comparison between open and forest sites. Hydrol. Earth Syst. Sci., 16, 2365-2377.10.5194/hess-16-2365-2012http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000306976200035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Pohl, S., Marsh, P., Liston, G.E., 2006. Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct. Antarct. Alp. Res., 38, 136-146.10.1657/1523-0430(2006)038[0136:SVITFD]2.0.CO;2Pomeroy, J., Fang, X., Ellis, C., 2012. Sensitivity of snowmelt hydrology in Marmot Creek, Alberta, to forest cover disturbance. Hydrol. Process., 26, 1891-1904. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304909700013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Pugh, E.T., Small, E.E., 2013. The impact of beetle-induced conifer death on stand-scale canopy snow interception. Hydrol. Res., 44, 644-657.R Core Team, 2016. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/ (accessed 8.1.16).Revuelto, J., López-Moreno, J.-I., Azorin-Molina, C., Alonso-González, E., Sanmiguel-Vallelado, A., 2016. Small-scale effect of pine stand pruning on snowpack distribution in the Pyrenees observed with a terrestrial laser scanner. Forests, 7, 166.Seibert, J., Jenicek, M., Huss, M., Ewen, T., 2014. Snow and ice in the hydrosphere. In: Haeberli, W., Whiteman, C. (Eds.): Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier, Amsterdam, pp. 99-137.Schelker, J., Kuglerová, L., Eklöf, K., Bishop, K., Laudon, H., 2013. Hydrological effects of clear-cutting in a boreal forest - Snowpack dynamics, snowmelt and streamflow responses. J. Hydrol., 484, 105-114.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317453200011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Schnorbus, M., Alila, Y., 2013. Peak flow regime changesfollowing forest harvesting in a snow-dominated basin: Effects of harvest area, elevation, and channel connectivity. Water Resour. Res., 49, 517-535.Stähli, M., Gustafsson, D., 2006. Long-term investigations of the snow cover in a subalpine semi-forested catchment. Hydrol. Process., 20, 411-428.Stähli, M., Jonas, T., Gustafsson, D., 2009. The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrol. Process., 23, 2498-2512.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000269103200009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Strasser, U., Warscher, M., Liston, G.E., 2011. Modeling snow-canopy processes on an idealized mountain. J. Hydrometeorol., 12, 663-677.10.1175/2011JHM1344.1http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000294047300010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Šípek, V., Tesař, M., 2014. Seasonal snow accumulation in the mid-latitude forested catchment. Biologia, 69, 1562-1569.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000346177900013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Vlcek, L., Kocum, J., Jansky, B., Sefrna, L., Kucerova, A., 2012. Retention potential and hydrological balance of a peat bog: case study of Rokytka Moors, Otava River headwaters, sw. Czechia. Geografie, 117, 395-414.Winkler, R., Spittlehouse, D., Boon, S., Zimonick, B., 2015. Forest disturbance effects on snow and water yield in interior British Columbia. Hydrol. Res., 46, 521-532.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000358297000005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3

Journal

Journal of Hydrology and Hydromechanicsde Gruyter

Published: Mar 1, 2018

There are no references for this article.