Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe success of aneurysm surgery depends on complete clipping of the aneurysmal sacculation without compromising quality of cerebral perfusion of vessels concerned. An established intraoperative method to visualize cerebral blood flow i n a pparent v essels i s fl uorescence vi deo angiography based on indocyanine green (ICG). However, major disadvantages of indocyanine green video angiography (ICG VA) are the need of a specialized imaging system, potential drug side effects as well as the limited number of repetitions due to long decay time of ICG in blood circulation. In particular the last drawback prevents brain parenchymal perfusion monitoring with ICG VA. The application of time-resolved thermography as a fast, contactless, noninvasive, marker-free and harmless imaging tool became a promising approach for perfusion imaging and thus offers several advantages compared to ICG. Measurements of deep structures in heat traps for identification of i nternal patterns, e ssential f or e .g. s uccess monitoring of aneurysm clipping, are still unsolved challenges of thermography. This work reveals as a proof of concept that the combination of thermography and an intravenous cold saline bolus injection as a contrast agent is capable to detect arterial and parenchymal perfusion located in the surgical cavity during aneurysm surgery in comparison to state-of-the-art ICG VA. The investigations provide evidence that thermography has the capability to perform intraoperative imaging of cerebral perfusion at an advanced stage in surgery for vessels and parenchyma located both cortically and in the surgical cavity.
Current Directions in Biomedical Engineering – de Gruyter
Published: Sep 1, 2018
Keywords: thermography; aneurysm clipping; neurosurgery; intraoperative thermal imaging; indocyanine green; video angiography
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.