Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe have developed a unified analytical model for computation of 2D electron gas sheet charge density in AlInN/GaN metal-oxide-semiconductor high electron mobility transistor device structure. This model has been developed by incorporating the variation in lowest three energy sub-bands and Fermi level energy in the quantum-well with respect to gate voltage. We noticed that the dependency of lowest sub-band energy with Fermi energy having two fields, which are the lowest sub-band energy is greater and lesser than the Fermi level energy. According to these two fields, we have developed the fermi energy and sheet charge density expressions in each field. By combining each field of the models, developed a unified 2D electron gas sheet charge density model. The Fermi level and sheet charge density are interdependent in the model development. The developed model results are compared with TCAD simulation results and obtain a good consistency between them. This model is fitted to other metal-oxide-semiconductor high electron mobility transistor devices also with modifications in related physical values.
International Journal of Electronics and Telecommunications – de Gruyter
Published: Nov 27, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.