# Definition:Element/Historical Note

## Historical Note on Element

The symbol for **is an element of ** originated as $\varepsilon$, first used by Giuseppe Peano in his *Arithmetices prinicipia nova methodo exposita* of $1889$. It comes from the first letter of the Greek word meaning **is**.

The stylized version $\in$ was first used by Bertrand Russell in *Principles of Mathematics* in $1903$.

See Earliest Uses of Symbols of Set Theory and Logic in Jeff Miller's website Earliest Uses of Various Mathematical Symbols.

$x \mathop \varepsilon S$ could still be seen in works as late as 1951: Nathan Jacobson: *Lectures in Abstract Algebra: Volume $\text { I }$: Basic Concepts* and 1955: John L. Kelley: *General Topology*.

Paul Halmos wrote in *Naive Set Theory* in $1960$ that:

*This version [$\epsilon$] of the Greek letter epsilon is so often used to denote belonging that its use to denote anything else is almost prohibited. Most authors relegate $\epsilon$ to its set-theoretic use forever and use $\varepsilon$ when they need the fifth letter of the Greek alphabet.*

However, since then the symbol $\in$ has been developed in such a style as to be easily distinguishable from $\epsilon$, and by the end of the $1960$s the contemporary notation was practically universal.

## Sources

- 1960: Paul R. Halmos:
*Naive Set Theory*... (previous) ... (next): $\S 1$: The Axiom of Extension

This page may be the result of a refactoring operation.As such, the following source works, along with any process flow, will need to be reviewed. When this has been completed, the citation of that source work (if it is appropriate that it stay on this page) is to be placed above this message, into the usual chronological ordering.Is the history of the notion and/or notation of the concept of "element" discussed?If you have access to any of these works, then you are invited to review this list, and make any necessary corrections.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{SourceReview}}` from the code. |

- 1963: George F. Simmons:
*Introduction to Topology and Modern Analysis*... (previous) ... (next): $\S 1$: Sets and Set Inclusion - 2008: Paul Halmos and Steven Givant:
*Introduction to Boolean Algebras*... (previous) ... (next): Appendix $\text{A}$: Set Theory: Sets and Subsets - 2012: M. Ben-Ari:
*Mathematical Logic for Computer Science*(3rd ed.) ... (previous) ... (next): Appendix $\text{A}.1$: Definition $\text{A}.1$