Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThe aim of the present note is to derive an integral transform I=∫0∞xs+1e-βx2+γxMk,v(2ζx2)Jμ(χx)dx,I = \int_0^\infty {{x^{s + 1}}{e^{ - \beta x}}^{2 + \gamma x}{M_{k,v}}} \left( {2\zeta {x^2}} \right)J\mu \left( {\chi x} \right)dx,involving the product of the Whittaker function Mk,ν and the Bessel function of the first kind Jµ of order µ. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters k and ν of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details [13], [3]).
Communications in Mathematics – de Gruyter
Published: Dec 1, 2021
Keywords: Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams; 33B15; 33C10; 33C15
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.