Access the full text.
Sign up today, get DeepDyve free for 14 days.
This article surveys many standard results about the braid group, with emphasis on simplifying the usual algebraic proofs. We use van der Waerden's trick to illuminate the Artin-Magnus proof of the classic presentation of the braid group considered as the algebraic mapping-class group of a disc with punctures. We give a simple, new proof of the σ 1 -trichotomy for the braid group, and, hence, recover the Dehornoy right-ordering of the braid group. We give three proofs of the Birman-Hilden theorem concerning the fidelity of braid-group actions on free products of finite cyclic groups, and discuss the consequences derived by Perron-Vannier and the connections with Artin groups and the Wada representations. The first, very direct, proof, is due to Crisp-Paris and uses the σ 1 -trichotomy and the Larue-Shpilrain technique. The second proof arises by studying ends of free groups, and gives interesting extra information. The third proof arises from Larue's study of polygonal curves in discs with punctures, and gives extremely detailed information.
Groups - Complexity - Cryptology – de Gruyter
Published: Apr 1, 2009
Keywords: Braid group; automorphisms of free groups; presentation; ordering; ends of groups
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.