Access the full text.
Sign up today, get DeepDyve free for 14 days.
Vicentiu Rădulescu (2019)
Isotropic and anisotropic double-phase problems: old and newOpuscula Mathematica
Qihu Zhang, Vicentiu Rădulescu (2018)
Double phase anisotropic variational problems and combined effects of reaction and absorption termsJournal de Mathématiques Pures et Appliquées
(1990)
Translated from the German by the author and Leo F
T. Bui (2018)
Global W 1,p(·) estimate for renormalized solutions of quasilinear equations with measure data on Reifenberg domainsAdvances in Nonlinear Analysis, 7
A. Khalil, M. Alaoui, A. Touzani (2017)
On the Spectrum of problems involving both p(x)-Laplacian and P(x)-BiharmonicAdvances in Science, Technology and Engineering Systems Journal, 2
Xianling Fan, Qihu Zhang (2003)
Existence of solutions for p(x) -Laplacian dirichlet problemNonlinear Analysis-theory Methods & Applications, 52
L. Diening, Petteri Harjulehto, P. Hästö, M. Růžička (2011)
Lebesgue and Sobolev Spaces with Variable Exponents
Vicentiu Rădulescu, Dušan Repovš (2015)
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis
K. Kefi, V. Rǎdulescu (2017)
On a p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p(x)}$$\end{document}-biharmonic problem with singulaZeitschrift für angewandte Mathematik und Physik, 68
M. Mihăilescu, Vicentiu Rădulescu (2006)
A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluidsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462
Xianling Fan, Xing Fan (2003)
A Knobloch-type result for p(t)-Laplacian systems☆Journal of Mathematical Analysis and Applications, 282
E. Zeidler (1989)
Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators
M. Růžička (2000)
Electrorheological Fluids: Modeling and Mathematical Theory
M. Cencelj, V. Ruadulescu, Dušan Repovš (2018)
Double phase problems with variable growthNonlinear Analysis
V. Zhikov (1987)
AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORYMathematics of The Ussr-izvestiya, 29
A. Szulkin (1988)
Ljusternik-Schnirelmann theory on $C^1$-manifoldsAnnales De L Institut Henri Poincare-analyse Non Lineaire, 5
Vicentiu Rădulescu (2015)
Nonlinear elliptic equations with variable exponent: Old and newNonlinear Analysis-theory Methods & Applications, 121
Aibin Zang, Yong Fu (2008)
Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spacesNonlinear Analysis-theory Methods & Applications, 69
D. Edmunds, J. Rákosnik (2000)
Sobolev embeddings with variable exponentStudia Mathematica, 143
Xianling Fan, X. Han (2004)
Existence and multiplicity of solutions for p(x)-Laplacian equations in RNNonlinear Analysis-theory Methods & Applications, 59
A. Scapellato (2019)
Regularity of solutions to elliptic equations on Herz spaces with variable exponentsBoundary Value Problems, 2019
AbstractThe existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p(·)-Harmonic and p(·)-biharmonic operatorsΔp(x)2u-Δp(x)u=λw(x)|u|q(x)-2u in Ω, u∈W2,p(⋅)(Ω)∩W0-1,p(⋅)(Ω),\eqalign{& \Delta _{p\left( x \right)}^2u - {\Delta _{p\left( x \right)}}u = \lambda w\left( x \right){\left| u \right|^{q\left( x \right) - 2}}u\,\,\,{\rm{in}}\,\,\Omega {\rm{,}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,u \in {W^{2,p\left( \cdot \right)}}\left( \Omega \right) \cap W_0^{ - 1,p\left( \cdot \right)}\left( \Omega \right), \cr}is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω) and Wm,p(·)(Ω).
Communications in Mathematics – de Gruyter
Published: Dec 1, 2021
Keywords: Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; p (·)-biharmonic operator; p (·)-harmonic operator; Variable exponent; 58E05; 35J35; 47J10
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.