Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract In this paper we introduce a triple-threshold leverage stochastic volatility (TTLSV) model for financial return time series. The main feature of the model is to allow asymmetries in the leverage effect as well as mean and volatility. In the model the asymmetric effect is modeled by a threshold nonlinear structure that the two regimes are determined by the sign of the past returns. The model parameters are estimated using maximum likelihood (ML) method based on the efficient importance sampling (EIS) technique. Monte Carlo simulations are presented to examine the accuracy and finite sample properties of the proposed methodology. The EIS-based ML (EIS-ML) method shows good performance according to the Monte Carlo results. The proposed model and methodology are applied to two stock market indices for China. Strong evidence of the mean and volatility asymmetries is detected in Chinese stock market. Moreover, asymmetries in the volatility persistence and leverage effect are also discovered. The log-likelihood and Akaike information criterion (AIC) suggest evidence in favor of the proposed model. In addition, model diagnostics suggest that the proposed model performs relatively well in capturing the key features of the data. Finally, we compare models in a Value at Risk (VaR) study. The results show that the proposed model can yield more accurate VaR estimates than the alternatives.
Studies in Nonlinear Dynamics & Econometrics – de Gruyter
Published: Sep 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.