Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation

A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation AbstractFor more than half a century, Fischer-Tropsch synthesis (FTS) of liquid hydrocarbons was a technology of great potential for the indirect liquefaction of solid or gaseous carbon-based energy sources (Coal-To-Liquid (CTL) and Gas-To-Liquid (GTL)) into liquid transportable fuels. In contrast with the past, nowadays transport fuels are mainly produced from crude oil and there is not considerable diversity in their variety. Due to some limitations in the first generation bio-fuels, the Second-Generation Biofuels (SGB)’ technology was developed to perform the Biomass-To-Liquid (BTL) process. The BTL is awell-known multi-step process to convert the carbonaceous feedstock (biomass) into liquid fuels via FTS technology. This paper presents a brief history of FTS technology used to convert coal into liquid hydrocarbons; the significance of bioenergy and SGB are discussed aswell. The paper covers the characteristics of biomass, which is used as feedstock in the BTL process. Different mechanisms in the FTS process to describe carbon monoxide hydrogenation aswell as surface polymerization reaction are discussed widely in this paper. The discussed mechanisms consist of carbide, CO-insertion and the hydroxycarbene mechanism. The surface chemistry of silica support is discussed. Silanol functional groups in silicon chemistry are explained extensively. The catalyst formulation in the Fischer Tropsch (F-T) process as well as F-T reaction engineering is discussed. In addition, the most common catalysts are introduced and the current reactor technologies in the F-T indirect liquefaction process are considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biofuels Engineering de Gruyter

A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation

Loading next page...
 
/lp/de-gruyter/a-review-of-fischer-tropsch-synthesis-process-mechanism-surface-4ce9L0y0fs
Publisher
de Gruyter
Copyright
© 2018
ISSN
2084-7181
eISSN
2084-7181
DOI
10.1515/bfuel-2017-0002
Publisher site
See Article on Publisher Site

Abstract

AbstractFor more than half a century, Fischer-Tropsch synthesis (FTS) of liquid hydrocarbons was a technology of great potential for the indirect liquefaction of solid or gaseous carbon-based energy sources (Coal-To-Liquid (CTL) and Gas-To-Liquid (GTL)) into liquid transportable fuels. In contrast with the past, nowadays transport fuels are mainly produced from crude oil and there is not considerable diversity in their variety. Due to some limitations in the first generation bio-fuels, the Second-Generation Biofuels (SGB)’ technology was developed to perform the Biomass-To-Liquid (BTL) process. The BTL is awell-known multi-step process to convert the carbonaceous feedstock (biomass) into liquid fuels via FTS technology. This paper presents a brief history of FTS technology used to convert coal into liquid hydrocarbons; the significance of bioenergy and SGB are discussed aswell. The paper covers the characteristics of biomass, which is used as feedstock in the BTL process. Different mechanisms in the FTS process to describe carbon monoxide hydrogenation aswell as surface polymerization reaction are discussed widely in this paper. The discussed mechanisms consist of carbide, CO-insertion and the hydroxycarbene mechanism. The surface chemistry of silica support is discussed. Silanol functional groups in silicon chemistry are explained extensively. The catalyst formulation in the Fischer Tropsch (F-T) process as well as F-T reaction engineering is discussed. In addition, the most common catalysts are introduced and the current reactor technologies in the F-T indirect liquefaction process are considered.

Journal

Biofuels Engineeringde Gruyter

Published: Dec 29, 2017

References