Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract In this a paper a non-linear macro stress testing methodology with focus on early warning is developed. The methodology builds on a variant of Random Forests and its proximity measures. It is embedded in a framework, in which naturally defined contagion and feedback effects transfer the impact of stressing a relatively small part of the observations on the whole dataset, allowing to estimate a stressed future state. It will be shown that contagion can be directly derived from the proximities while iterating the proximity based contagion leads to naturally defined feedback effects. Since the methodology is Random Forests based the framework can be estimated on large numbers of risk indicators up to big data dimensions, fostering the stability of the results while reducing inaccuracies in estimated stress scenarios by only stressing a small part of the observations. This procedure allows accurate forecasting of events under stress and the emergence of a potential macro crisis. The framework also estimates a set of the most influential economic indicators leading to the potential crisis, which can then be used as indications of remediation or prevention.
Dependence Modeling – de Gruyter
Published: Nov 16, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.