Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract This paper introduces a new type of attack, termed a nonlinear decomposition attack, against two known group-based key agreement protocols, namely, protocol based on extensions of (semi)groups by endomorphisms introduced by Kahrobaei, Shpilrain et al., and the noncommutative Diffie–Hellman protocol introduced by Ko, Lee et al. This attack works efficiently in the case when finitely generated nilpotent (more generally, polycyclic) groups are used as platforms. This attack is based on a deterministic algorithm that finds the secret shared key from the public data in both the protocols under consideration. Furthermore, we show that in this case one can break the schemes without solving the algorithmic problems on which the assumptions are based. The efficacy of the attack depends on the platform group, so it requires a more thorough analysis in each particular case.
Groups Complexity Cryptology – de Gruyter
Published: Nov 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.