Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe continue the study of permutations avoiding the vincular pattern 1−32−4 by constructing a generating tree with a single label for these permutations. This construction finally provides a clearer explanation of why a certain recursive formula found by Callan actually counts these permutations, since this formula was originally obtained as a consequence of a very intricate bijection with a certain class of ordered rooted trees. This responds to a theoretical issue already raised by Duchi, Guerrini and Rinaldi. As a byproduct, we also obtain an algorithm to generate all these permutations and we refine their enumeration according to a simple statistic, which is the number of right-to-left maxima to the right of 1.
Pure Mathematics and Applications – de Gruyter
Published: Jun 1, 2022
Keywords: permutation; vincular pattern; generating tree; powered Catalan numbers; 05A15
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.