Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractThis paper presents extensions to the family of nonparametric fractional variance ratio (FVR) unit root tests of Nielsen (2009. “A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic.” Econometric Theory 25: 1515–44) under heavy tailed (infinite variance) innovations. In this regard, we first develop the asymptotic theory for these FVR tests under this setup. We show that the limiting distributions of the tests are free of serial correlation nuisance parameters, but depend on the tail index of the infinite variance process. Then, we compare the finite sample size and power performance of our FVR unit root tests with the well-known parametric ADF test under the impact of the heavy tailed shocks. Simulations demonstrate that under heavy tailed innovations, the nonparametric FVR tests have desirable size and power properties.
Studies in Nonlinear Dynamics & Econometrics – de Gruyter
Published: Dec 1, 2022
Keywords: heavy tailed innovation; infinite variance distribution; nonparametric test; unit root test; C14; C15; C22
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.