Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Role of microbial reducing activity in antimony and arsenic release from an unpolluted wetland soil: a lab scale study using sodium azide as a microbial inhibiting agent

Role of microbial reducing activity in antimony and arsenic release from an unpolluted wetland... Environmental contextAntimony and arsenic are toxic elements occurring naturally in the environment. We found that arsenic release to water from an unpolluted wetland soil is related to microbial reducing activity only, whereas antimony can still be released when this activity is inhibited, suggesting the involvement of additional processes. The findings show that microbial/non-microbial mechanisms control arsenic and antimony release and can thereby impact water quality at wetland outlets.AbstractIn wetland soils, the mobility of geogenic metal(loid)s is usually associated with direct or indirect microbial-induced processes (solubilisation of mineral and organic components, pH induced desorption, competition effects, dissimilatory reduction). To identify the role of microbial reducing activity in As and Sb release, we conducted two series of soil incubations (sodium azide-treated (NaN3-T) and non-treated (NT)) in closed batches for 36 days. During the incubation period, we monitored the evolution of dissolved As, Sb, Mn, FeII, organic carbon (DOC), humic substances (HS) and proteins (PN) with their apparent molecular weight distribution (aMW) as well as pH, reduction potential (Eh) and alkalinity. Results showed that the release of As and Sb occurred when microbially reducing conditions prevailed (NT soil Eh ~0mV and FeII>40mg L1) and was inhibited for As in the absence of microbial reducing activity (NaN3-T soil; Eh>250mV and Fe<1mg L1). In contrast, Sb behaved differently since its release was only slowed down when microbially reducing conditions were inhibited. We concluded that soil microbial reducing activity fully controls the release of As and to a lesser extent that of Sb when NaN3 is used as a microbial inhibiting agent. Since Sb release and dissolved organic matter (DOM) solubilisation (NaN3-induced artefact) occurred simultaneously in the absence of microbially reducing conditions, we concluded that organic matter could be one key factor controlling Sb mobilisation in the given conditions, which is not the case for As. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Chemistry CSIRO Publishing

Role of microbial reducing activity in antimony and arsenic release from an unpolluted wetland soil: a lab scale study using sodium azide as a microbial inhibiting agent

Loading next page...
 
/lp/csiro-publishing/role-of-microbial-reducing-activity-in-antimony-and-arsenic-release-pw5ScVM715

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CSIRO Publishing
Copyright
Copyright © The Author(s). Published by CSIRO Publishing
ISSN
1448-2517
eISSN
1449-8979
DOI
10.1071/EN16029
Publisher site
See Article on Publisher Site

Abstract

Environmental contextAntimony and arsenic are toxic elements occurring naturally in the environment. We found that arsenic release to water from an unpolluted wetland soil is related to microbial reducing activity only, whereas antimony can still be released when this activity is inhibited, suggesting the involvement of additional processes. The findings show that microbial/non-microbial mechanisms control arsenic and antimony release and can thereby impact water quality at wetland outlets.AbstractIn wetland soils, the mobility of geogenic metal(loid)s is usually associated with direct or indirect microbial-induced processes (solubilisation of mineral and organic components, pH induced desorption, competition effects, dissimilatory reduction). To identify the role of microbial reducing activity in As and Sb release, we conducted two series of soil incubations (sodium azide-treated (NaN3-T) and non-treated (NT)) in closed batches for 36 days. During the incubation period, we monitored the evolution of dissolved As, Sb, Mn, FeII, organic carbon (DOC), humic substances (HS) and proteins (PN) with their apparent molecular weight distribution (aMW) as well as pH, reduction potential (Eh) and alkalinity. Results showed that the release of As and Sb occurred when microbially reducing conditions prevailed (NT soil Eh ~0mV and FeII>40mg L1) and was inhibited for As in the absence of microbial reducing activity (NaN3-T soil; Eh>250mV and Fe<1mg L1). In contrast, Sb behaved differently since its release was only slowed down when microbially reducing conditions were inhibited. We concluded that soil microbial reducing activity fully controls the release of As and to a lesser extent that of Sb when NaN3 is used as a microbial inhibiting agent. Since Sb release and dissolved organic matter (DOM) solubilisation (NaN3-induced artefact) occurred simultaneously in the absence of microbially reducing conditions, we concluded that organic matter could be one key factor controlling Sb mobilisation in the given conditions, which is not the case for As.

Journal

Environmental ChemistryCSIRO Publishing

Published: Jan 1, 2016

References