Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Formation of polyaromatic hydrocarbon (PAH)-quinones during the gas phase reactions of PAHs with the OH radical in the atmosphere

Formation of polyaromatic hydrocarbon (PAH)-quinones during the gas phase reactions of PAHs with... Environmental contextAtmospheric quinones present a potential toxic risk to human health because of their involvement in the generation of reactive oxygen species. Gas phase reactions of naphthalene and phenanthrene with the OH radical are investigated in a laboratory reaction chamber to provide a preliminary assessment of the importance of the atmospheric formation of quinones.AbstractIn light of the potential toxicity of quinones (QNs) to human health, previous studies carried out measurement of QNs in ambient air samples and from motor vehicle emissions to understand the characteristics and the sources of QNs in the atmosphere. The major compounds observed in the ambient air samples comprised two and three benzene rings and included polyaromatic hydrocarbon (PAH)-quinones (PAH-QNs) such as 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ) and 9,10-anthraquinone (9,10-AQ). Although these PAH-QNs are found in vehicular emissions, they may also be formed by the photochemical reactions of gas phase PAHs with atmospheric oxidants. In this study, to allow an assessment of the importance of the atmospheric formation of PAH-QNs and to understand more clearly the sources of PAH-QNs in the atmosphere, the formation yields of PAH-QNs from the gas phase reactions of naphthalene and phenanthrene with the OH radical were observed in a laboratory reaction chamber. In addition, the phase distribution of the PAH-QNs was determined. For naphthoquinones (NQs), the formation yields of 1,4-NQ and 1,2-NQ were 1.50.4 and 5.12.7 respectively. The measured yields of PQs were 3.60.8 for 9,10-PQ and 2.71.1 for 1,4-PQ. From the measured yield data, the atmospheric formation of PAH-QNs was estimated and the importance of the atmospheric formation of PAH-QNs from the gas phase reaction of PAHs with the OH radical is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Chemistry CSIRO Publishing

Formation of polyaromatic hydrocarbon (PAH)-quinones during the gas phase reactions of PAHs with the OH radical in the atmosphere

Environmental Chemistry , Volume 12 (3): 9 – Apr 22, 2015

Loading next page...
 
/lp/csiro-publishing/formation-of-polyaromatic-hydrocarbon-pah-quinones-during-the-gas-oVqQVX2F0a

References (24)

Publisher
CSIRO Publishing
Copyright
Copyright © The Author(s). Published by CSIRO Publishing
ISSN
1448-2517
eISSN
1449-8979
DOI
10.1071/EN14150
Publisher site
See Article on Publisher Site

Abstract

Environmental contextAtmospheric quinones present a potential toxic risk to human health because of their involvement in the generation of reactive oxygen species. Gas phase reactions of naphthalene and phenanthrene with the OH radical are investigated in a laboratory reaction chamber to provide a preliminary assessment of the importance of the atmospheric formation of quinones.AbstractIn light of the potential toxicity of quinones (QNs) to human health, previous studies carried out measurement of QNs in ambient air samples and from motor vehicle emissions to understand the characteristics and the sources of QNs in the atmosphere. The major compounds observed in the ambient air samples comprised two and three benzene rings and included polyaromatic hydrocarbon (PAH)-quinones (PAH-QNs) such as 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ) and 9,10-anthraquinone (9,10-AQ). Although these PAH-QNs are found in vehicular emissions, they may also be formed by the photochemical reactions of gas phase PAHs with atmospheric oxidants. In this study, to allow an assessment of the importance of the atmospheric formation of PAH-QNs and to understand more clearly the sources of PAH-QNs in the atmosphere, the formation yields of PAH-QNs from the gas phase reactions of naphthalene and phenanthrene with the OH radical were observed in a laboratory reaction chamber. In addition, the phase distribution of the PAH-QNs was determined. For naphthoquinones (NQs), the formation yields of 1,4-NQ and 1,2-NQ were 1.50.4 and 5.12.7 respectively. The measured yields of PQs were 3.60.8 for 9,10-PQ and 2.71.1 for 1,4-PQ. From the measured yield data, the atmospheric formation of PAH-QNs was estimated and the importance of the atmospheric formation of PAH-QNs from the gas phase reaction of PAHs with the OH radical is discussed.

Journal

Environmental ChemistryCSIRO Publishing

Published: Apr 22, 2015

There are no references for this article.