Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties

Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties Environmental contextThe supramolecular structure and resulting physicochemical properties of soil organic matter (SOM) significantly control storage and buffer functions of soils, e.g. for nutrients, organic molecules and water. Multivalent cations, able to form complexes, are suggested to form inter- and intramolecular cross-links in SOM. At present, specific effects of the valence and type of cation on SOM properties are incompletely understood. We investigated changes in SOM interfacial properties, its ability to release mobile colloids in aqueous solutions and its sorption affinity towards organic chemicals in dependence on cationSOM interactions, temperature and aging time.AbstractThe present study aims to improve our understanding on the effect of multivalent cations, temperature treatment and isothermal aging time on interfacial soil organic matter (SOM) properties as major factors that modify its supramolecular structures. A sandy topsoil (LW) and a peat soil (SP) were enriched with Na, Ca or Al, or desalinated in a batch experiment, treated at 25, 40, 60 and 105C and aged at constant temperature and humidity (20C, 31 relative humidity). After aging for different periods, contact angles (CAs), sorption properties towards xenobiotics and properties of water dispersible colloids were determined. With increasing valence of the dominant cations fewer and larger colloids were observed, probably attributable to cation cross-links or enhanced aggregation caused by reduced surface charge. Al-enrichment of LW resulted in more abundant or more accessible sorption sites for hydrophobic xenobiotics. But in contrast to expectations, hydrophilic sorption as well as wettability was not significantly affected by the type of adsorbed cation. Increasing the temperature had a major effect on surface properties resulting in rising surface hydrophobisation with increasing solidwater CAs, decreasing surface O/C ratio and decreasing sorption of hydrophilic substances whereas systematic temperature effects on water dispersible colloids and on hydrophobic sorption were not detected. Aging was found to increase the initial CA of the 25C treatment and to increase the sorption of phenanthrene to LW for all treatment temperatures. We conclude that aging of SOM is a process that changes surface properties and approaches a new equilibrium state after a disturbance. The aging process may be significantly accelerated for samples treated at elevated temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Chemistry CSIRO Publishing

Loading next page...
 
/lp/csiro-publishing/effect-of-multivalent-cations-temperature-and-aging-on-soil-organic-oFU4w8FrR9

References (36)

Publisher
CSIRO Publishing
Copyright
Copyright © The Author(s). Published by CSIRO Publishing
ISSN
1448-2517
eISSN
1449-8979
DOI
10.1071/EN14008
Publisher site
See Article on Publisher Site

Abstract

Environmental contextThe supramolecular structure and resulting physicochemical properties of soil organic matter (SOM) significantly control storage and buffer functions of soils, e.g. for nutrients, organic molecules and water. Multivalent cations, able to form complexes, are suggested to form inter- and intramolecular cross-links in SOM. At present, specific effects of the valence and type of cation on SOM properties are incompletely understood. We investigated changes in SOM interfacial properties, its ability to release mobile colloids in aqueous solutions and its sorption affinity towards organic chemicals in dependence on cationSOM interactions, temperature and aging time.AbstractThe present study aims to improve our understanding on the effect of multivalent cations, temperature treatment and isothermal aging time on interfacial soil organic matter (SOM) properties as major factors that modify its supramolecular structures. A sandy topsoil (LW) and a peat soil (SP) were enriched with Na, Ca or Al, or desalinated in a batch experiment, treated at 25, 40, 60 and 105C and aged at constant temperature and humidity (20C, 31 relative humidity). After aging for different periods, contact angles (CAs), sorption properties towards xenobiotics and properties of water dispersible colloids were determined. With increasing valence of the dominant cations fewer and larger colloids were observed, probably attributable to cation cross-links or enhanced aggregation caused by reduced surface charge. Al-enrichment of LW resulted in more abundant or more accessible sorption sites for hydrophobic xenobiotics. But in contrast to expectations, hydrophilic sorption as well as wettability was not significantly affected by the type of adsorbed cation. Increasing the temperature had a major effect on surface properties resulting in rising surface hydrophobisation with increasing solidwater CAs, decreasing surface O/C ratio and decreasing sorption of hydrophilic substances whereas systematic temperature effects on water dispersible colloids and on hydrophobic sorption were not detected. Aging was found to increase the initial CA of the 25C treatment and to increase the sorption of phenanthrene to LW for all treatment temperatures. We conclude that aging of SOM is a process that changes surface properties and approaches a new equilibrium state after a disturbance. The aging process may be significantly accelerated for samples treated at elevated temperatures.

Journal

Environmental ChemistryCSIRO Publishing

Published: Dec 16, 2014

There are no references for this article.