# MATHEMATICAL RIGOR AND PROOF

MATHEMATICAL RIGOR AND PROOF Abstract Mathematical proof is the primary form of justification for mathematical knowledge, but in order to count as a proper justification for a piece of mathematical knowledge, a mathematical proof must be rigorous. What does it mean then for a mathematical proof to be rigorous? According to what I shall call the standard view, a mathematical proof is rigorous if and only if it can be routinely translated into a formal proof. The standard view is almost an orthodoxy among contemporary mathematicians, and is endorsed by many logicians and philosophers, but it has also been heavily criticized in the philosophy of mathematics literature. Progress on the debate between the proponents and opponents of the standard view is, however, currently blocked by a major obstacle, namely, the absence of a precise formulation of it. To remedy this deficiency, I undertake in this paper to provide a precise formulation and a thorough evaluation of the standard view of mathematical rigor. The upshot of this study is that the standard view is more robust to criticisms than it transpires from the various arguments advanced against it, but that it also requires a certain conception of how mathematical proofs are judged to be rigorous in mathematical practice, a conception that can be challenged on empirical grounds by exhibiting rigor judgments of mathematical proofs in mathematical practice conflicting with it. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Symbolic Logic Cambridge University Press

# MATHEMATICAL RIGOR AND PROOF

, Volume 15 (2): 41 – Jun 1, 2022

## MATHEMATICAL RIGOR AND PROOF

, Volume 15 (2): 41 – Jun 1, 2022

### Abstract

Abstract Mathematical proof is the primary form of justification for mathematical knowledge, but in order to count as a proper justification for a piece of mathematical knowledge, a mathematical proof must be rigorous. What does it mean then for a mathematical proof to be rigorous? According to what I shall call the standard view, a mathematical proof is rigorous if and only if it can be routinely translated into a formal proof. The standard view is almost an orthodoxy among contemporary mathematicians, and is endorsed by many logicians and philosophers, but it has also been heavily criticized in the philosophy of mathematics literature. Progress on the debate between the proponents and opponents of the standard view is, however, currently blocked by a major obstacle, namely, the absence of a precise formulation of it. To remedy this deficiency, I undertake in this paper to provide a precise formulation and a thorough evaluation of the standard view of mathematical rigor. The upshot of this study is that the standard view is more robust to criticisms than it transpires from the various arguments advanced against it, but that it also requires a certain conception of how mathematical proofs are judged to be rigorous in mathematical practice, a conception that can be challenged on empirical grounds by exhibiting rigor judgments of mathematical proofs in mathematical practice conflicting with it.

/lp/cambridge-university-press/mathematical-rigor-and-proof-ZJp6LgH4tw
Publisher
Cambridge University Press
© The Author(s), 2019. Published by Cambridge University Press on behalf of The Association for Symbolic Logic
ISSN
1755-0211
eISSN
1755-0203
DOI
10.1017/S1755020319000443
Publisher site
See Article on Publisher Site

### Abstract

Abstract Mathematical proof is the primary form of justification for mathematical knowledge, but in order to count as a proper justification for a piece of mathematical knowledge, a mathematical proof must be rigorous. What does it mean then for a mathematical proof to be rigorous? According to what I shall call the standard view, a mathematical proof is rigorous if and only if it can be routinely translated into a formal proof. The standard view is almost an orthodoxy among contemporary mathematicians, and is endorsed by many logicians and philosophers, but it has also been heavily criticized in the philosophy of mathematics literature. Progress on the debate between the proponents and opponents of the standard view is, however, currently blocked by a major obstacle, namely, the absence of a precise formulation of it. To remedy this deficiency, I undertake in this paper to provide a precise formulation and a thorough evaluation of the standard view of mathematical rigor. The upshot of this study is that the standard view is more robust to criticisms than it transpires from the various arguments advanced against it, but that it also requires a certain conception of how mathematical proofs are judged to be rigorous in mathematical practice, a conception that can be challenged on empirical grounds by exhibiting rigor judgments of mathematical proofs in mathematical practice conflicting with it.

### Journal

Review of Symbolic LogicCambridge University Press

Published: Jun 1, 2022

Keywords: 00A30; 00A35; 03A05; mathematical rigor; mathematical proof; formal proof; mathematical practice

Access the full text.