Access the full text.
Sign up today, get DeepDyve free for 14 days.
<?tight?>Discovering the correlations among variables of air quality data is challenging, because the correlation time series are long-lasting, multi-faceted, and information-sparse. In this article, we propose a novel visual representation, called Time-correlation-partitioning (TCP) tree, that compactly characterizes correlations of multiple air quality variables and their evolutions. A TCP tree is generated by partitioning the information-theoretic correlation time series into pieces with respect to the variable hierarchy and temporal variations, and reorganizing these pieces into a hierarchically nested structure. The visual exploration of a TCP tree provides a sparse data traversal of the correlation variations and a situation-aware analysis of correlations among variables. This can help meteorologists understand the correlations among air quality variables better. We demonstrate the efficiency of our approach in a real-world air quality investigation scenario.
ACM Transactions on Interactive Intelligent Systems (TiiS) – Association for Computing Machinery
Published: Feb 11, 2019
Keywords: Sensor
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.