Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

UAVs vs. Pirates

UAVs vs. Pirates For the rising hazard of pirate attacks, unmanned aerial vehicle (UAV) swarm monitoring is a promising countermeasure. Previous monitoring methods have deficiencies in either adaptivity to dynamic events or simple but effective path coordination mechanisms, and they are inapplicable to the large-area, low-target-density, and long-duration persistent counter-piracy monitoring. This article proposes a self-organized UAV swarm counter-piracy monitoring method. Based on the pheromone map, this method is characterized by (1) a reservation mechanism for anticipatory path coordination and (2) a ship-adaptive mechanism for adapting to merchant ship distributions. A heuristic depth-first branch and bound search algorithm is designed for solving individual path planning. Simulation experiments are conducted to study the optimal number of plan steps and adaptivity scaling factor for different numbers of UAVs. Results show that merely decreasing revisit intervals cannot effectively reduce pirate attacks. Without the ship-adaptive mechanism, the proposed method reduces up to 87.2%, 43.2%, and 5.5% of revisit intervals compared to the Lèvy Walk method, the sweep method, and the baseline self-organized method, respectively, but cannot reduce pirate attacks; while with the ship-adaptive mechanism, the proposed method can reduce pirate attacks by up to 6.7% compared to the best of the baseline methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Autonomous and Adaptive Systems (TAAS) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/uavs-vs-pirates-0KYzRTn8yX

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2020 ACM
ISSN
1556-4665
eISSN
1556-4703
DOI
10.1145/3380782
Publisher site
See Article on Publisher Site

Abstract

For the rising hazard of pirate attacks, unmanned aerial vehicle (UAV) swarm monitoring is a promising countermeasure. Previous monitoring methods have deficiencies in either adaptivity to dynamic events or simple but effective path coordination mechanisms, and they are inapplicable to the large-area, low-target-density, and long-duration persistent counter-piracy monitoring. This article proposes a self-organized UAV swarm counter-piracy monitoring method. Based on the pheromone map, this method is characterized by (1) a reservation mechanism for anticipatory path coordination and (2) a ship-adaptive mechanism for adapting to merchant ship distributions. A heuristic depth-first branch and bound search algorithm is designed for solving individual path planning. Simulation experiments are conducted to study the optimal number of plan steps and adaptivity scaling factor for different numbers of UAVs. Results show that merely decreasing revisit intervals cannot effectively reduce pirate attacks. Without the ship-adaptive mechanism, the proposed method reduces up to 87.2%, 43.2%, and 5.5% of revisit intervals compared to the Lèvy Walk method, the sweep method, and the baseline self-organized method, respectively, but cannot reduce pirate attacks; while with the ship-adaptive mechanism, the proposed method can reduce pirate attacks by up to 6.7% compared to the best of the baseline methods.

Journal

ACM Transactions on Autonomous and Adaptive Systems (TAAS)Association for Computing Machinery

Published: Aug 4, 2020

Keywords: UAV swarm

References