Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Toward Multi-FPGA Acceleration of the Neural Networks

Toward Multi-FPGA Acceleration of the Neural Networks High-throughput and low-latency Convolutional Neural Network (CNN) inference is increasingly important for many cloud- and edge-computing applications. FPGA-based acceleration of CNN inference has demonstrated various benefits compared to other high-performance devices such as GPGPUs. Current FPGA CNN-acceleration solutions are based on a single FPGA design, which are limited by the available resources on an FPGA. In addition, they can only accelerate conventional 2D neural networks. To address these limitations, we present a generic multi-FPGA solution, written in OpenCL, which can accelerate more complex CNNs (e.g., C3D CNN) and achieve a near linear speedup with respect to the available single-FPGA solutions. The design is built upon the Intel Deep Learning Accelerator architecture, with three extensions. First, it includes updates for better area efficiency (up to 25%) and higher performance (up to 24%). Second, it supports 3D convolutions for more challenging applications such as video learning. Third, it supports multi-FPGA communication for higher inference throughput. The results show that utilizing multiple FPGAs can linearly increase the overall bandwidth while maintaining the same end-to-end latency. In addition, the design can outperform other FPGA 2D accelerators by up to 8.4 times and 3D accelerators by up to 1.7 times. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Journal on Emerging Technologies in Computing Systems (JETC) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/toward-multi-fpga-acceleration-of-the-neural-networks-ug1E47OwAm
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 ACM
ISSN
1550-4832
eISSN
1550-4840
DOI
10.1145/3432816
Publisher site
See Article on Publisher Site

Abstract

High-throughput and low-latency Convolutional Neural Network (CNN) inference is increasingly important for many cloud- and edge-computing applications. FPGA-based acceleration of CNN inference has demonstrated various benefits compared to other high-performance devices such as GPGPUs. Current FPGA CNN-acceleration solutions are based on a single FPGA design, which are limited by the available resources on an FPGA. In addition, they can only accelerate conventional 2D neural networks. To address these limitations, we present a generic multi-FPGA solution, written in OpenCL, which can accelerate more complex CNNs (e.g., C3D CNN) and achieve a near linear speedup with respect to the available single-FPGA solutions. The design is built upon the Intel Deep Learning Accelerator architecture, with three extensions. First, it includes updates for better area efficiency (up to 25%) and higher performance (up to 24%). Second, it supports 3D convolutions for more challenging applications such as video learning. Third, it supports multi-FPGA communication for higher inference throughput. The results show that utilizing multiple FPGAs can linearly increase the overall bandwidth while maintaining the same end-to-end latency. In addition, the design can outperform other FPGA 2D accelerators by up to 8.4 times and 3D accelerators by up to 1.7 times.

Journal

ACM Journal on Emerging Technologies in Computing Systems (JETC)Association for Computing Machinery

Published: Apr 29, 2021

Keywords: FPGA

References